The Kurzweil predictions that don’t matter

Time for…another Ray Kurzweil analysis. It’s funny how I keep swearing to myself I won’t write another one about him, but end up doing so anyway. I’m sorry. For sure, there won’t be anything more about him until next year or later.

In my last blog post, “Will Kurzweil’s 2019 be our 2029?”, I mentioned that several of his predictions for 2019 were wrong, and would probably still be wrong in 2029, but that it didn’t matter since they pertained to inconsequential things. Rather than leave all two of you who read my blog hanging in suspense, I’d like to go over those and explain my thoughts. As before, these predictions are taken from Kurzweil’s 1998 book The Age of Spiritual Machines.

The augmented reality / virtual reality glasses will work by projecting images onto the retinas of the people wearing them.

To be clear, by 2030, standalone AR and VR eyewear will have the levels of capability Kurzweil envisioned for 2019. However, it’s unknowable whether retinal projection will be the dominant technology they will use to show images to the people wearing them. Other technologies like lenses made of transparent LCD screens, or beamed images onto semitransparent lenses, could end up dominant. Whichever gains the most traction by 2030 is irrelevant to the consumer–they will only care about how smooth and convincing the digital images displays in front of them look.

“Keyboards are rare, although they still exist. Most interaction with computing is through gestures using hands, fingers, and facial expressions and through two-way natural-language spoken communication.”

The first sentence was wrong in 2019 and still will be in 2029. As old-fashioned as they may be, keyboards have many advantages over other modes of interacting with computers:

  • Keyboards are physically large and have big buttons, meaning you’re less likely to push the wrong one than you are on a tiny smartphone keyboard.
  • They have many keys corresponding not only to letters and numbers, but to functions, meaning you can easily use a basic keyboard to input a vast range of text and commands into a computer. Imagine how inefficient it would be to input a long URL into a browser toolbar or to write computer code if you had to open all kinds of side menus on your input device to find and select every written symbol, including colons, semicolons, and dollar symbols. Worse, imagine doing that using “hand gestures” and “facial expressions.”
  • Keyboards are also very ergonomic to use and require nothing more than tiny finger movements and flexions of the wrists. By contrast, inputting characters and commands into your computer through some combination of body movements, gestures and facial expressions that it would see would take you much more time and physical energy (compare the amount of energy it takes you to push the “A” button on your keyboard with how much it takes to raise both of your arms up and link your hands over your head with your elbows bent to turn your body into something resembling an “A” shape). And you’d have to go to extra trouble to make sure the device’s camera had a full view of your body and that you were properly lit. This is why something like the gestural interface Tom Cruise used in Minority Report will never become common.

Furthermore, two-way voice communication with computers has its place, but won’t replace keyboards. First, talking with machines sacrifices your privacy and annoys the people within earshot of you. Imagine a world where keyboards are banned and people must issue voice commands to their computers when searching for pornography, and where workers in open-concept offices have to dictate all their emails. Second, verbal communication works poorly in noisy environments since you and your machine have problems understanding each other. It’s simply not a substitute for using keyboards.

Even verbal communication plus gestures, facial expressions, and anything else won’t be enough to render keyboards obsolete. If you want to get any kind of serious work done, you need one.

This will still hold true in 2029, and keyboards will not be “rare” then, or even in 2079. Kurzweil will still be wrong. But so what? The keyboard won’t be “blocking” any other technology, and given its advantages over other modes of data and command input, its continued use is unavoidable and necessary.

Let me conclude this section by saying I can only imagine keyboards becoming obsolete in exotic future scenarios. For example, in a space ship crewed entirely by robots, keyboards, mice, and even display screens might be absent since the robots and the ship would be able to directly communicate through electronic signals. If the captain wanted to turn left, it would think the command, and the ship’s sensors would receive it and respond. And in his mind’s eye, the captain would see live footage from external ship cameras.

“Cables have largely disappeared.”

As I wrote in the analysis, it will still be common for control devices and peripheral devices to have data cables in 2029 due to better information security and slightly lower costs. Moreover, in many cases there will be no functional disadvantage to having corded devices, as they never need to leave the vicinity of whatever they are connected to. Consider, if you have a PC at your work desk, why would you ever need to move your keyboard to anyplace other than the desk’s surface? To use your computer, you need to be close to it and the monitor, which means the keyboard has to stay close to them as well. In such a case, a keyboard with a standard, 5 foot long cord would serve you just as well as a wireless keyboard that could connect to your PC from a mile away.

“Of the total computing capacity of the human species (that is, all human brains), combined with the computing technology the species has created, more than 10 percent is nonhuman.”

This was badly wrong in 2019, and in 2029, the “nonhuman” portion of all computation on Earth will probably be no higher than 1%, so it will still be wrong. But so what? Comparisons of how much raw thinking humans and machines do are misleading since they are “apples to oranges,” and they provide almost no useful insights into the overall state of computer technology or automation.

When it comes to computation, quantity does not equal quality. Consider this example: I estimated that, in 2019, all the world’s computing devices combined did a total of 3.5794 x 1021 flops of computation. Now, if someone invented an AGI that was running on a supercomputer that was, say, ten times as powerful as a human brain, the AGI would be capable of 200 petaflops, or 2.0 x 1017 flops. Looking at the raw figures for global computation, it would seem like the addition of that AI changed nothing: the one supercomputer it was running on wouldn’t even make the global computation count of 3.5794 x 1021 flops increase by one significant digit! However, anyone who has done the slightest thinking about AI’s consequences knows that one machine would be revolutionary, able to divide its attention in many directions at once, and would have inaugurated a new era of much faster economic, scientific, and technological growth that would have been felt by people across the world.

“Rotating memories and other electromechanical computing devices have been fully replaced with electronic devices.”

Rotating computer memories–also called “hard disk drives” (HDD)–were still common in 2019, and will still be in 2029, though less so. This is because HDDs have important advantages over their main competitor, solid-state drives (SSDs), often called “flash drives,” and those advantages will not disappear over this decade.

HDDs are cheaper on a per-bit basis and are less likely to suffer data corruption or data loss. SSDs, on the other hand, are more physically robust since they lack moving parts, and allow much faster access to the data stored in them since they don’t contain disks that have to “spin up.” Given the tradeoffs, in 2029, HDDs will still be widely used in data centers and electronic archive facilities, where they will store important data which needs to be preserved for long periods, but which isn’t so crucial that users need instantaneous access to it. Small consumer electronic devices, including smartphones, smart watches, and other wearables, will continue to exclusively have SSD memory, and finding newly manufactured laptops with anything but SSDs might be impossible. Only a small fraction of desktop computers will have HDDs by then.

So rotating memories will still be around in 2029, meaning the prediction will still be wrong since it contains the absolute term “fully replaced.” But again, so what? All of the data that average people need to see on a day-to-day basis will be stored on SSDs, ensuring they will have instantaneous access to it. The cost of HDD and SSD memory will have continued its long-running, exponential improvement, making both trivially cheap by 2029 (it was already so cheap in 2019 that even poor people could buy enough to meet all their reasonable personal needs). The HDDs that still exist will be out of sight, either in server farms or in big, immobile boxes that are on or under peoples’ work desks. The failure of the prediction will have no noticeable impact, and if you could teleport to a parallel universe where HDDs didn’t exist anymore, nothing about day-to-day life would seem more futuristic.

“A new computer-controlled optical-imaging technology using quantum-based diffraction devices has replaced most lenses with tiny devices that can detect light waves from any angle. These pinhead-sized cameras are everywhere.”

The cameras that make use of quantum effects and reflected light never got good enough to exit the lab, and it’s an open question whether they will be commercialized by 2029. I doubt it, but don’t see why it should matter. Billions of cameras–most of them tiny enough to fit on smartphones–already are practically everywhere and will be even more ubiquitous in 2029. It’s not relevant whether they make use of exotic principles to capture video and still images or whether they use through conventional methods involving the capture of visible light. The important aspects of the prediction–that cameras will be very small and all over the place–was right in 2019 and will be even more right in 2029.

“People read documents either on the hand-held displays or, more commonly, from text that is projected into the ever present virtual environment using the ubiquitous direct-eye displays. Paper books and documents are rarely used or accessed.”

This prediction was technologically possible in 2019, but didn’t come to pass because many people showed a (perhaps unpredictable) preference for paper books and documents. It turns out there’s something appealing about the tactile experience of leafing through books and magazines and being able to carry them around that PDFs and tablet computers can’t duplicate. Personal computing devices had to become widely available before we could realize old fashioned books and sheets of paper had some advantages.

Come 2029, paper books, magazines, journals, newspapers, memos, and letters will still be commonly encountered in everyday life, so the prediction will still be wrong. Fortunately, the persistence of paper isn’t a significant stumbling block in any way since all important paper documents from the pre-computer era have been scanned and are available over the internet for free or at low cost, and all important new written documents originate in electronic format.

For what it’s worth, I’ve predicted that, in the 2030s, books and computer tablets will merge into a single type of device that could be thought of as a “digital book.” It will be a book with several hundred pages made of thin, flexible digital displays (perhaps using ultra-energy efficient e-ink) instead of paper. At the tap of a button, the text on all of the pages will instantly change to display whichever book the user wanted to read at that moment. They could also be used as notebooks in which the user could hand write or draw things with a stylus, which would be saved as image or text files. The devices will fuse the tactile appeal of old-fashioned books with the content flexibility of tablet computers.

“Three-dimensional holography displays have also emerged. In either case, users feel as if they are physically near the other person. The resolution equals or exceeds optimal human visual acuity. Thus a person can be fooled as to whether or not another person is physically present or is being projected through electronic communication.”

3D volumetric displays didn’t advance nearly as fast as Kuzweil predicted, so this was wrong in 2019, and the technology doesn’t look poised for a breakthrough, so it will still be wrong in 2029. However, it doesn’t matter since VR goggles and probably AR glasses as well will let people have the same holographic experiences. By 2029, you will be able to put on eyewear that displays lifelike, moving images of other people, giving the false impression they are around you. Among other things, this technology will be used for video calls.

“The all-enveloping tactile environment is now widely available and fully convincing. Its resolution equals or exceeds that of human touch and can simulate (and stimulate) all the facets of the tactile sense, including the senses of pressure, temperature, textures, and moistness…the ‘total touch’ haptic environment requires entering a virtual reality booth.”

The haptic/kinetic/touch aspect of virtual reality is very underdeveloped compared to its audio and visual aspects, and will still lag far behind in 2029, but little will be lost thanks to this. After all, if you’re playing a VR game, do you want to be able to feel bullets hitting you, or to feel the extreme temperatures of whatever exotic virtual environment you’re in? Even if we had skintight catsuits that could replicate physical sensations accurately, would we want to wear them? Slipping on a VR headset that covers your eyes and ears is fast and easy–and will become even more so as the devices miniaturize thanks to better technology–but taking off all your clothes to put on a VR catsuit is much more trouble.

A VR headset is made of smooth metal and high-impact plastic, making it easy to clean with a damp a rag. By contrast, a catsuit made of stretchy material and studded with hard servos, sensors and other little machines would soak up sweat, dirt and odors, and couldn’t be thrown in the washing machine or dryer like a regular garment since its parts would get damaged if banged around inside. It’s impractical.

“These technologies are popular for medical examinations, as well as sensual and sexual interactions…”

I doubt that VR body suits and VR “booths” will be able to satisfactorily replicate anything but a narrow range of sex acts. Given the extreme importance of tactile stimulation, the setup would have to include a more expensive catsuit. There would also need to be devices for the genitals, adding more costs, and possibly other contraptions to apply various types of physical force (thrust, pull, resistance, etc.) to the user. Cleanup would be even more of a hassle. [Shakes head]

The fundamental limits to this technology are such that I don’t think it will ever become “popular” since VR sex will fall so far short of the real thing. That said, I believe another technology, androids, will be able to someday “do it” as well as humans. Once they can, androids will become some of the most popular consumer devices of all time, with major repercussions for dating, marriage, gender relations, and laws relating to sex and prostitution. They would let any person, regardless of social status, looks, or personality, to have unlimited amounts of “sex,” which is unheard of in human history. Just don’t expect it until near the end of this century!

“The vast majority of transactions include a simulated person, featuring a realistic animated personality and two-way voice communication with high-quality natural-language understanding.”

As with replacing all books with PDFs on computer displays, there was no technological barrier to this in 2019, but it didn’t happen because most transactions remained face-to-face, and because people preferred online transactions involving simple button-clicks rather than drawn-out conversations with fake human salesmen. The consumer preferences were not clear when the prediction was made in 1998.

By 2029, the prediction will still be wrong, though it won’t matter, since buying things by simply clicking on buttons and typing a few characters is faster and much less aggravating than doing the same transactions through a “simulated person.” Anyone who has dealt with a robot operator on the phone that laboriously enunciates menu options and obtusely talks over you when you are responding will agree. It would be a step backwards if that technology became more widespread by 2029.

“Automated driving systems have been found to be highly reliable and have now been installed in nearly all roads. While humans are still allowed to drive on local roads (although not on highways), the automated driving systems are always engaged and are ready to take control when necessary to prevent accidents.”

Sensors and transmitters that could guide cars were never installed along roadways, but it didn’t turn out to be a problem since we found that cars could use GPS and their own onboard sensors to navigate just as well. So the prediction was wrong, and the expensive roadside networks will still not exist in 2029, but it won’t matter.

The second part of the prediction will be half right by 2029, and it’s failure to be 100% right will be consequential. By then, autonomous cars will be statistically safer than the average human driver and will be in the “human range” of “efficiency,” albeit towards the bottom of the range: they will still be overly cautious, slowing down and even stopping whenever they detect slightly dangerous conditions (e.g. – erratic human driver nearby, pedestrian who looks like they might be about to cross the road illegally, heavy rain, dead leaves blowing across the road surface). In short, they’ll drive like old ladies, which will be annoying at times.

While the technology will be cheaper and more widely accepted, it will still be a luxury feature in 2029 that only a minority of cars in rich countries have. At best, a token number of public roads worldwide will ban human-driven vehicles. Enormous numbers of lives will be lost in accidents, and billions of dollars wasted in traffic jams each year thanks to autonomous car technology not advancing as fast as Kurzweil predicted.

“The type of artistic and entertainment product in greatest demand (as measured by revenue generated) continues to be virtual-experience software, which ranges from simulations of ‘real’ experiences to abstract environments with little or no corollary in the physical world.”

In 2019, the sports industry had the highest revenues in the entertainment sector, totaling $480 – $620 billion. That year, the VR gaming industry generated a paltry $1.2 billion in revenue, so the prediction was badly wrong for 2019. And even if the latter grows twentyfold over this decade, which I think is plausible, it won’t come close to challenging the dominance of sports.

That said, looking at revenues is kind of arbitrary. The spirit of the prediction, which is that VR gaming will become a very popular and common means of entertainment, will be right by 2029 in rich countries, and it will only get more widespread with time.

“Computerized health monitors built into watches, jewelry, and clothing which diagnose both acute and chronic health conditions are widely used. In addition to diagnosis, these monitors provide a range of remedial recommendations and interventions.”

The devices are already built into some smartwatches, and will be “widely used” by any reasonable metric by 2029. I don’t think they will be shrunk to the sizes of jewelry like rings and earrings, but that won’t have any real consequences since the watches will be available. No one in 2029 will say “I’m really concerned about my heart problem and want to buy a wearable monitoring device, but my health is not so important that I would want to trouble myself with a watch. However, I’d be OK with a ring.”

Health monitoring devices won’t be built into articles of clothing for the same reasons that other types of computers won’t be built into them: 1) laundering and drying the clothes would be a hassle since water, heat and being banged around would damage their electronic parts and 2) you’d have to remember to always wear your one shirt with the heartbeat monitor sewn into it, regardless of how appropriate it was for the occasion and weather, or how dirty it was from wearing it day after day. It makes much more sense to consolidate all your computing needs into one or two devices that are fully portable and easy to keep clean, like a smartphone and smartwatch, which is why we’ve done that.

Links:

  1. Rotating computer memories (HDDs) are cheaper and more reliable than solid-state memories (SSDs). Those advantages are unlikely to disappear, meaning HDDs will still be around in 2029.
    https://www.computerweekly.com/feature/Spinning-disk-hard-drives-Good-value-for-many-use-cases
  2. Even old-fashioned computer tapes will still be around in 2029, as they’re even better-suited for long-term data storage (called “cold storage”).
    https://www.economist.com/science-and-technology/2020/12/15/magnetic-tape-has-a-surprisingly-promising-future

One Reply to “The Kurzweil predictions that don’t matter”

  1. Ray’s all predictions come true, but not widely adopted. He was a Google x head. He is the greatest predictor all the time. He analyse the data and make accurate prediction that much deep predictions no one did before. He may wrong in some cases. But respect him.

Leave a Reply

Your email address will not be published. Required fields are marked *