Interesting articles, February 2021

To prove that its latest tactical ballistic missile works, Russia released clips of it blowing up targets in combat. One clip is of a missile striking a Syrian hospital in 2016–an attack which Russia has denied being responsible for.
https://www.thedrive.com/the-war-zone/39487/did-russia-try-to-refute-criticisms-of-its-missiles-by-showing-one-blowing-up-a-syrian-hospital

Russian warships are more heavily armed than their U.S. counterparts. This video breaks down the doctrinal, financial, and technological reasons for the difference.
https://www.youtube.com/watch?v=0oMH8MPl-tk

Before the U.S. had “doomsday planes,” it had “doomsday ships.”
https://www.thedrive.com/the-war-zone/39301/there-were-doomsday-ships-ready-to-ride-out-nuclear-armageddon-before-there-were-doomsday-planes

C-47 cargo planes that the Americans and British used in WWII are still flying in Colombia as gunships.
https://www.thedrive.com/the-war-zone/39236/theres-one-place-in-the-world-where-ac-47-spooky-gunships-still-fly

Only 2,500 U.S. troops remain in Afghanistan. By comparison, there are 33,000 U.S. troops in Germany and 54,000 in Japan. Is there any reason we shouldn’t say “The U.S. won the Iraq War”?
https://www.voanews.com/middle-east/us-cuts-troops-iraq-2500

For the first time in two decades, a year has passed without a U.S. servicemember dying in Afghanistan. Troop levels in that country are also down to only 2,500. Is the Afghan War over?
https://www.military.com/daily-news/2021/02/08/us-goes-one-year-without-combat-death-afghanistan-taliban-warns-against-reneging-peace-deal.html

The U.S. Army needed a T-80 tank for training purposes, so it bought one (actually, an upgraded variant called the T-84) from Ukraine. Twenty-five years ago, this was the best tank the Former USSR had.
https://nationalinterest.org/blog/buzz/secret-out-did-ukrainian-t-84-arrive-arizona-testing-177905

There’s a long waitlist for foreign countries that want to buy surplus American Humvees.
https://nationalinterest.org/blog/reboot/waitlist-buy-surplus-army-humvees-now-23-nations-long-177634

Our past assumptions about how lasers work might be wrong.
https://gizmodo.com/physicists-are-reinventing-the-laser-1846085004

While the “space of all possible songs” is effectively infinite, mathematical analyses show that humans gravitate towards creating and preferring a small cluster of song melodies and beats. This is probably due to cognitive and auditory limitations (i.e. – our brains come pre-wired to enjoy specific patterns of sounds, and we can’t hear many sound frequencies), and to certain songs becoming popular long ago by luck, and influencing the songs that came after.
https://youtu.be/DAcjV60RnRw

Human-produced noise pollution in the world’s oceans is overwhelming to sea life.
https://www.bbc.com/news/science-environment-55939344

America’s only coal carbon capture power plant just closed. It was never economical.
https://earther.gizmodo.com/the-only-carbon-capture-plant-in-the-u-s-just-closed-1846177778

So far, global warming has had no net effect on Antarctica’s temperature.
https://www.nature.com/articles/s41612-020-00143-w

In January, the experts at The Weather Channel predicted the U.S. would have an abnormally warm winter, and that much of Texas would be particularly hot. In fact, Texas and several surrounding states were struck with record-breaking low temperatures in February and snow, knocking out utility service to millions and leading to dozens of deaths.
https://weather.com/news/weather/video/winter-temperature-outlook-released
https://ktxs.com/news/local/numerous-records-broken-during-this-historic-winter-storm

According to past sci-fi movies set in 2021, we were supposed to have computer brain implants, cyborg dolphins, an alien invasion and a couple world-ending disasters by now.
https://www.thesun.co.uk/tv/14067163/films-set-2021-predictions-pandemics-aliens-accurate/

These 2010 predictions about the state of video game technology in 2020 mostly fell flat and make me feel kind of bad. What if my own predictions about when full-immersion VR games will become popular are also wrong?
https://www.forbes.com/sites/insertcoin/2010/12/28/predicting-the-console-generation-of-2020/

There’s a betting market for predicting when the first A.I. will be invented. Right now, the median is 2036, and 75% of respondents expect it to happen by 2062 at the latest. I think the soonest it might happen is sometime in the 2040s, but that doesn’t mean I think that’s the likeliest decade it will debut.
https://www.metaculus.com/questions/3479/when-will-the-first-artificial-general-intelligence-system-be-devised-tested-and-publicly-known-of/

A genealogy website called “MyHeritage” unveiled an app that lets users bring still photos of the dead relatives to life. It’s a little creepy.
https://www.myheritage.com/deep-nostalgia

Similarly, this computer program transforms ancient busts into colorful, animated faces.
https://www.youtube.com/watch?v=hOt7K1-m15k

42,000 years ago, the Earth’s magnetic field reversed, triggering sudden climate changes and mass extinctions, and making the Northern Lights visible all over the planet. Prehistoric humans lived through this.
https://science.sciencemag.org/content/371/6531/811

NASA released amazing footage of the Perseverance rover landing on Mars.
https://www.youtube.com/watch?v=4czjS9h4Fpg

Satellites from China and the UAE also entered Martian orbit.
https://apnews.com/article/uae-spacecraft-mars-historic-flight-d6d933c488c0a30987f86f91ce89fb8b

In 6 billion years, the Moon will break into pieces and fall to Earth.
https://www.damninteresting.com/curio/the-anticipated-future-of-the-moon/

Fuel efficiency data for hybrid-electric cars have been fudged. They’re not as good as advertised.
https://www.isi.fraunhofer.de/en/presse/2020/presseinfo-16-plug-in-hybridfahrzeuge-verbrauch.html

Google terminated its “Loon” project, which sought to use high-altitude balloons to beam high-speed internet service to remote places.
https://medium.com/loon-for-all/loon-draft-c3fcebc11f3f

Scientists have created transparent wood.
https://advances.sciencemag.org/content/7/5/eabd7342

There was once a plan to grow trees with square trunks. There would be less waste at the lumber mill.
https://www.straightdope.com/21344108/whatever-happened-to-that-plan-to-grow-square-trees

‘There’s an enormous range in this ability in the animal kingdom. At the very lowest end, you’ve got the deep-sea marine isopods, wood lice, which are enormous and can see only four flashes every second. At the upper end of the scale, there are flies capable of seeing 250 flashes per second. Do they perceive time differently? I don’t know. But certainly their view of the world happening around them is incredibly different. (Humans are somewhere between these two on the scale.) What this means is you can have two animals sitting beside one another, one seeing all these little details, hyper-sensitive to all these minute little changes, the world flying around them, and meanwhile the other is basically living in a completely different temporal niche, living in a slow-placed, kind of lazy world, completely oblivious to all of it.’
https://gizmodo.com/how-do-animals-perceive-time-1846206287

An endangered ferret was cloned from cells taken from an animal that died 30 years ago.
https://www.cnn.com/2021/02/19/us/elizabeth-ann-ferret-cloned-scli-intl-scn/index.html

Marriage satisfaction, and the odds of getting divorced, are partly genetic. “[The] CD38 gene (CD38), at the single nucleotide polymorphism (SNP) rs3796863, is associated with cognitions and behaviors related to pair bonding…”
https://www.nature.com/articles/s41598-021-82307-z

We may have just found a highly effective weight loss drug with minimal side effects. Over 68 weeks, people taking it lost an average of 15% of their body weight.
https://blogs.sciencemag.org/pipeline/archives/2021/02/15/glp-1-and-obesity

An Israeli company made the world’s first lab-grown steak.
https://www.prnewswire.com/il/news-releases/aleph-farms-and-the-technion-reveal-worlds-first-cultivated-ribeye-steak-301224800.html

The sizes of South Koreans’ brains grew and the shapes of their skulls changed thanks to improved nutrition after the long period of privation under Japanese domination and the Korean War.
http://doi.wiley.com/10.1002/ajpa.23464

Russia’s Sputnik-V vaccine for COVID-19 was viewed skeptically upon its debut, but recent studies prove it is as effective as the vaccines invented later in the U.S. and Britain.
https://www.msn.com/en-us/news/world/putins-once-scorned-vaccine-now-favorite-in-pandemic-fight/ar-BB1drjfv

These charts show how effective the different COVID-19 vaccines are. These data also confirm that the South African strain of the virus is more resistant to them.
https://wordpress.cels.anl.gov/covid-vaccine-efficacy/

The U.S. recorded its 500,000th death from COVID-19. Fortunately, the death rate is dropping, and the 600,000 milestone isn’t expected to come until sometime in late May or early June.
https://apnews.com/article/us-deaths-nears-500k-coronavirus-acab3cc916330a3f068b7589350a18cd

An article from a year ago: “[There] appears to be nothing very special about this outbreak of the 2019-nCoV or Wuhan ­virus. It should actually be called the DvV, or Déjà vu Virus, because we have been through these hysterias before.”
https://nypost.com/2020/01/23/dont-buy-the-media-hype-over-the-new-china-virus/

J.P. Morgan’s analysts think the COVID-19 epidemic will be “effectively over” in the U.S. by April.
https://www.barrons.com/articles/the-pandemic-could-be-effectively-over-by-april-j-p-morgan-says-heres-why-51613163599

American life expectancy just dropped by a year thanks to the excess COVID-19 deaths. This hasn’t happened since WWII.
https://www.bbc.com/news/world-us-canada-56110005

The COVID-19 lockdowns are now 10 months old. If millions of people being shut in with their significant others was going to lead to more sex and a baby boom, we would have seen the results by now. Instead, there has been a baby bust.
https://www.bloomberg.com/news/articles/2021-02-01/u-s-baby-boom-forecast-turned-out-to-be-bust-despite-lockdown
https://www.france24.com/en/france/20210122-the-baby-boom-that-never-was-france-sees-sharp-decline-in-lockdown-babies

Review: “Cloud Atlas”

Plot: Cloud Atlas is comprised of six short films set in six different times and places. Each short film has a unique plot and characters, but they are played by the same actors, leading to many interesting and at times funny role reversals from the viewer’s perspective. The movie jumps between the six stories in a way that shows their thematic similarities. It’s a very ambitious attempt at storytelling through the film medium, but also an unsuccessful one. As a whole, Cloud Atlas is too confusing and practically collapses under its own weight. 

Rather than even attempting to summarize its Byzantine plot in more detail, here’s a link to a well-written plot synopsis you can read if you like before proceeding farther: 

“This film follows the stories of six people’s “souls” across time, and the stories are interweaved as they advance, showing how they all interact. It is about how the people’s lives are connected with and influence each other…”
https://www.imdb.com/title/tt1371111/plotsummary?ref_=ttpl_sa_2#synopsis

On the one hand, I’m glad that in today’s sad era of endless sequels, remakes and reboots, Hollywood is still willing to take occasional risks on highly creative, big-budget sci fi films like Cloud Atlas. On the other, none of that changes the fact that movie is a hot mess.

For the purposes of this sci fi analysis, I’m only interested in the chapters of the movie set in the future. The first takes place in Seoul (renamed “Neo Seoul”) in 2144, and the second takes place on a primitive tropical island “hundreds” of years after that, and following some kind of global cataclysm. Though the date when the later sequence happens is never stated in the film, the book on which it is based says it is 2321, and I’ll use that for this review.

Analysis:

Slavery will come back. In 2144, South Korea, and possibly some part of the countries surrounding it, is run by an evil government/company called “Unanimity.” Among its criminal practices is allowing the use of slave labor. The slaves, called “fabricants,” are parentless humans who are conceived in labs, gestated in artificial wombs, and euthanized after 12 years of labor. They seem to have no legal rights, can be killed for minor reasons, and are treated as inferiors by natural-born humans. Though they look externally identical to any other human, it’s hinted that the fabricants have been genetically altered to be obedient and hard workers, and perhaps to have physiological differences. Juvenile fabricants are never shown, which leads me to think they are gestated as mature adults. The 2144 plot centers around one fabricant who escapes from her master and joins a rebel group fighting to end slavery. 

The protagonist of the 2144 film segment is this female fabricant.

Slavery will not exist in 2144 because 1) the arc of history is clearly towards stronger human rights and 2) machines will be much better and cheaper workers than humans by then. In a profit-obsessed society like the one run by Unanimity, no business that employed humans, even those working for free as slaves, could survive against competitors that used robots. After all, it still costs money to feed, clothe, and house human slaves, and to give them medical care when necessary. And while the film implies that the human slaves partly exist to gratify the sexual needs of human clients, robots–specifically, androids–should be superior in that line of work, as well. 

For these same reasons, if intelligent machines have taken over the planet by 2144, it won’t make sense for them to enslave humans, or at least not for long. Intelligent machines would find it cheaper, safer, and better to build task-specific, “dumb” machines to do jobs for them than to employ humans. There could be a nightmare scenario where AIs win a mutually devastating war with humanity, and due to scarce resources and destroyed infrastructure, the use of human labor is the best option, but this arrangement would only last until the AIs could build worker robots.  

Human clones will exist. Though the fabricants are played by different actresses, the protagonist that escapes from her master later sees fabricants that look identical to her. This means the fabricants as a whole have limited genetic diversity and probably consist of several strains of clones. 

“Zhong Zhong” and “Hua Hua” are identical clones of an adult monkey.

Human clones will be created long before 2144. In 2018, Chinese scientists made two clones of one monkey. Given the close similarities between human and monkey genetics and chromosome structure, the same technique or a variant of it could be used to clone humans. The only thing that has stopped it from happening so far is bioethics concerns stemming from the technique’s high failure rate–77 out of 79 cloned monkey embryos that were implanted in surrogate mothers during the experiment were miscarried or died shortly after birth. More time and more experiments will surely refine the process. 

When will the success rate be “good enough” for us to make the first human clones? Sir John Gurdon won a Nobel Prize for his 1962 experiments cloning frogs. In 2012, he predicted that human cloning would probably begin in 50 years–which is 2062. Given the state of the science today, that looks reasonable. 

In 2144, cloning will be affordable and legal in at least one country that allows medical tourism, but only a tiny percentage of people will want to use it, and an insignificant share of the human race will consist of clones. Bereaved parents wanting to replace their dead children will probably be the industry’s main customers. It sounds creepy, but what if the clones actually make most of them happy?

Display screens will cover many types of surfaces. The bar/restaurant staffed by the fabricants is a drab room whose walls, ceilings, floors, and furniture are covered by thin display screens. At the flick of a switch, the screens can come alive and show colors, images, and moving pictures just like a traditional TV or computer monitor. An apartment is also shown later on that has a wraparound room display. 

I conservatively predict that wallpaper-like display screens with the same capabilities and performance as those depicted in the movie will be a mature, affordable technology by 2044, which is 100 years before the events shown in the film segment. In other words, it will be very old technology. The displays built into the floors would have to be thickest and most robust for obvious reasons, and will probably be the last ones to be introduced. This technology will allow people to have wall-sized TV screens in their houses, to place “lights” at any points and configuration in a given room, and to create immersive environments like cruder versions of the Star Trek “holodeck.”  

Through a “transparent” wall, the partly flooded city of Seoul is visible.

Walls will be able to turn transparent. In the aforementioned apartment, one of the walls can turn into a “fake window” at the push of a button. The display screen that covers it can display live footage from outside the building, presumably provided to it by exterior cameras. This technology should also be affordable and highly convincing in effect by 2044, if not earlier. Note that the Wachowskis also included this technology in their film Jupiter Ascending, but it was used to make floors transparent instead of walls. 

There will be 3D printed meals. The 2144 segment begins in a bar/restaurant staffed by fabricants. A sequence shows a typical work day for them, and we see how a 3D “food printer” creates realistic-looking dishes in seconds. The printer consists of downward-pointing nozzles that spray colored substances onto bowls and dishes, where it congeals into solid matter. Its principle of operation is like a color printer’s, but it can stack layers of edible “ink” to rapidly build up things. 

A 3D food printer somehow squirts out these elaborate-looking meals in under ten seconds.

3D food printers already exist, and they can surely be improved, but they will never be able to additively manufacture serving-sizes of food in seconds, unless you’re making a homogenized, simple dish like soft-serve ice cream or steak tartare. To manufacture a complex piece of food like those shown in the film sequence, much more time would be needed for the squirted biomatter to settle and set properly to achieve the desired texture and appearance, and for heat, lasers or chemicals to cook it properly. For these reasons, I don’t think the depiction of the futuristic 3D food printer will prove accurate.

However, the next best things will be widely available by then: lab-grown foods and fast robot chefs. By 2144, it should be cheaper to synthesize almost any type of food than to grow or raise it the natural way, and I predict humans will get most of their calories from industrial-scale labs. This includes meat, which we’ll grow using stem cells. Common processed foodstuffs like flour, corn starch, and sugar could also be directly synthesized from inorganic chemicals and electricity, saving us from having to grow and harvest the plants that naturally make them.

A 3D food printer today.

The benefits of the “manufactured food” paradigm will be enormous. First, it would be much more humane since we would no longer need to kill billions of animals per year for food. Second, it would be better for the environment since we could make most of our food indoors, in enclosed facilities. The environmental damage caused by the application of pesticides and fertilizers would drop because we’d have fewer open-air farms. And since the “food factories” would be more efficient, we could produce the same number of calories on a smaller land footprint, which would allow us to let old farms revert back to nature. Third, it would be better for the economy. Manufactured food would be cheaper since it would cut out costly intermediate steps like planting seeds, harvesting plants, separating their edible parts from the rest, and butchering animals to isolate their different cuts of meat. No time, money or energy would be spent making excess matter like corn husks, banana peels, chicken feathers, animal brains, or bones–the synthesis process would be waste-free, and would turn inorganic matter and small clumps of stem cells directly into 100% edible pieces of food. Food factory output would also be largely unaffected by uncontrollable natural events like droughts, hailstorms, an locust swarms, making food supply levels much more predictable and prices more stable. Fourth, food factories would be able to produce cleaner, higher-quality foods at lower cost. The energy and material costs of making a premium ribeye steak are probably no higher than the costs of making a tough, rubbery round steak. With that in mind, the meat factories could ONLY EVER make premium ribeye steaks, which will be great since the price will drop and everyone, not just richer people, will be able to eat the highest quality cuts. (If you want to do side research on this, Google the awesome term “carcass balancing” and knock yourself out.)

By 2144, machines will be able to do everything humans can do, except better, faster and cheaper, which means robot chefs will be ubiquitous and highly skilled. They would work very efficiently and consistently, meaning restaurant wait times would be short, and the meals would always be prepared perfectly. Thanks to all these factors, the 2144 equivalent of a low-income person could walk into an ordinary restaurant and order a cheap meal consisting of what would be very expensive ingredients today (e.g. – Kobe beef steak, caviar, lobster). Those ingredients would be identical to their natural counterparts, and would be only a few hours fresh from the factory thanks to the highly efficient automated logistics systems that will also exist by then. A robot chef with several pairs of hands and superhuman reflexes would combine and cook the ingredients with astounding speed and precision. Not single movement would be wasted. Within 15 minutes of placing his order, the customer’s food would be in front of him.

Today, this level of cuisine and service is known only to richer people, but in the future, it will be common thanks to technology. This falls short of Cloud Atlas‘ depiction of 3D food printers making meals in seconds, but there are worse fates…

Street scene from 2144.

There will be flying cars. CGI camera shots of Neo-Seoul show its streets filled with flying cars, flying trucks and flying motorcycles. Most often, they hover one or two feet above the ground, but they’re also capable of flying high in the air. The vehicles levitate thanks to circular “pads” on their undersides, which glow blue and make buzzing sounds. The Wachowskis also featured these “hoverpads” on the flying vehicles in their Matrix films. In no film was their principle of operation explained. 

This shot clearly shows the hoverpads.

The only way the hoverpads could make cars “fly” is if they were made of superconductors and the roads were made of magnets. 2144 is a long way off, so it’s possible that we could discover room-temperature superconductors that were also cheap to manufacture by then. No law of physics prohibits it. Likewise, we could discover new methods of cheaply creating powerful magnets and magnetic fields so we can embed them in the millions of miles of global roadways. Vehicles with superconducting undersides could “hover” over these roads, but not truly “fly” since the magnetic fields they’d depend on would get sharply weaker with vertical distance–“Coulomb’s Law” says that a magnet’s strength decreases the farther you get from it in an inversely squared manner. 

Ironically, the inability to go high in the air would be a selling point for hovercars since the prospect of riding in one would be less scary to land-loving humans (in my analysis of true flying cars, I said this was one reason why that technology was infeasible). Hovercars would also be quieter, more energy efficient, and smoother-riding than normal cars due to their lack of contact and friction with the road. Their big limitation would be an inability to drive off-road or anywhere else where there weren’t magnets in the ground. However, that might be a bearable inconvenience since the global road network will be denser in 2144 than it is now, and we might also have had enough time by then to install the magnets in all but the remotest and least-trafficked roads. You could rent wheeled vehicles when needed as easily as you summon an Uber cab today (the 2144 film sequence takes place in a city, so for all we know, wheeled cars are still widely in use elsewhere).

In conclusion, if we make a breakthrough in superconductor technology, it would enable the creation of hovercars, which might very well find strong consumer demand thanks to real advantages they would have over normal cars. True “flying cars” will not be in use by 2144, but hovercars could be, especially in heavily-trafficked places like cities and the highways linking them together, where it will make the most economic sense to install magnets in the roads. This means Cloud Atlas‘ depiction of transit technology was half wrong, and half “maybe.” 

There will be at least one off-world human colony. During the 2144 segment, a character mentions that there are four “off-world colonies.” In the 2321 segment, those colonies are spoken of again, and people from one of them come to Earth in space ships to rescue several characters from the ailing planet. That space colony’s location is not named, but judging by the final scene, in which the characters are sitting outdoors amongst alien-looking plants, and one of them points to a blue dot in the night sky and says it is Earth, the colony is on a terraformed celestial body in our Solar System. The facts that gravity levels seem within the normal range and two moons are visible in the sky suggest it is Mars, though the moons would actually look smaller than that.  

In the last chronological scene in the film, the characters are on an alien moon or planet.

“Colony” implies something more substantial than “base” or “outpost.” As I did in my Blade Runner review, I’m going to assume it refers to settlements that:

  1. Have non-token numbers of permanent human residents
  2. Have significant numbers of human residents who are not “elite” in terms of wealth or technical skills
  3. Are self-sustaining, regardless of whether the level of sustenance affords the same quality of life on Earth. 

I think there will certainly be bases on the Moon and Mars by the end of this century, and that they will be continuously manned. Good analogs for these bases are the International Space Station and the various research stations in Antarctica. Making conservative assumptions about steady improvements in technology and continued human interest in exploring space, it’s possible there will be at least one off-world colony by 2144, and likely that will be the case by 2321.

However, those projections come with a huge proviso, which I already stated in my Blade Runner review: “I think the human race will probably be overtaken by intelligent machines before we are able to build true off-world colonies that have large human populations. Once we are surpassed here on Earth, sending humans into space will seem all the more wasteful since there will be machines that can do all the things humans can, but at lower cost. We might never get off of Earth in large numbers, or if we do, it will be with the permission of Our Robot Overlords to tag along with them since some of them were heading to Mars anyway.” The rise of A.I. will be a paradigm shift in the history of our civilization, species, and planet, and its scrambling effect on long-term predictions like the prospects of human settlement of space must be acknowledged.

Finally, while off-world colonies might exist as early as 2144, none of the moons or planets on which they are established will have breathable atmospheres or comfortable outdoor temperatures for many centuries, if ever. The final scene depicted Mars having an Earthlike environment, where humans could stroll around the surface without breathing equipment or heavy clothing to protect against the cold. Two of the characters from the 2321 film sequence were shown, and both were done up with special effects makeup to look older, suggesting the final scene was set in the mid-2300s. In spite of the distant date, it was still much too early for the planet to have been terraformed to such an extent. In fact, melting all of Mars’ ice and releasing all the carbon dioxide sequestered in its rocks would only thicken its atmosphere to 7% of Earth’s surface air pressure, which wouldn’t be nearly good enough for humans to breathe, or to raise the planet’s temperatures to survivable levels. The effort would also be folly since the gases we released at such great expense would inevitably dissipate into space.

And that’s a real bummer since Mars is the most potentially habitable celestial body we know of aside from Earth! Venus has a crushingly thick, toxic atmosphere, and even if we somehow thinned it out and made it breathable, the planet would be unsuited for humans given its high temperatures and weirdly long days and nights (one Venusian day is 117 Earth days long). Mercury is much too close to the Sun and too hot, our Moon lacks the gravity to hold down an atmosphere and is covered in dust that inflames the human body, the gas giant planets are totally hopeless, and even their “best” moons have fundamental problems.

By the 2300s and even as early as 2144, there could be sizeable, self-sufficient colonies of humans off Earth, but everyone will be living inside sealed structures. Life inside those habitats could be nice (all the interior surfaces could be covered in thin display screens that showed calming footage of forests and beaches), but no one would be strolling on the surface in a T-shirt. And it might stay that way forever, regardless of how advanced technology became and how much money we spent building up those colonies.

There will be…some kinds of super guns. In the two film segments set in the future, characters use handheld guns that are more powerful than today’s firearms, but also operate on mysterious principles. It’s unclear whether the guns are shooting out physical projectiles or intangible projectiles made of laser beams or globs of plasma, but something exotic is at work since the guns don’t eject bullet casings or make the familiar “Pop!” sounds. Whatever they shoot is out very damaging and easily passes through human bodies and walls. In one scene, a person goes flying several feet backward after being shot at close range by one of the pistols. 

A man flying backwards after being shot. Only a huge bullet could do this, and it would be impractical to shoot it out of a little handgun.

The super guns can’t be firing plasma because plasma weapons are infeasible, and they also can’t be firing laser beams because they’d get so hot with waste heat that all the characters would be dropping the guns in pain after one or two shots and clutching their burned hands. To fire a significant number of shots, a man-portable laser weapon would need to be large and to have some bulky means to radiating its waste heat, which means it would have to take a form similar to the Ghostbusters backpack weapon. I don’t see how any level of technology can solve the problems of energy storage and heat disposal without the weapon being about that big. The film characters’ weapons were sized like pistols and sub machine guns, so they couldn’t be laser weapons. If you want to understand how I arrived at these conclusions, read my Terminator review.

By deduction, that means the super guns were shooting out little pieces of metal, otherwise known as bullets! Yes, I do think personal firearms will still be in use in 2144, and maybe even in 2321. They might look a little different from those we have now, but they’ll operate in the same way and will still use kinetic energy to damage people and objects. I don’t think they’ll make “zoop” sounds like they did in the movie, and I don’t think they’ll be much harder-hitting than today’s guns. To the last point, it would be inefficient and wasteful to use guns that are so powerful their bullets send people flying through the air. And thanks to Newton’s Third Law of Motion, it’s also impractical to use handguns or even sub machine guns to shoot bullets that are so powerful they send people flying. The recoil would break your wrist, or at least make it so punishing to fire your own gun that you wouldn’t be able to use it in combat.

The film should have adopted a more conservative view of future gun technology. Had the weapons looked cosmetically different from today’s guns and not ejected shells after each shot–indicating they used caseless bullets, a technology we’re still working on–then the depiction would have been plausible and probably accurate.

There will be fusion reactors. In the 2321 sequence, an advanced group of humans travels the oceans in a futuristic ship that looks the size of a large yacht. The ship visits an island full of primitive humans, and one of the crew mentions to them that the ship has fusion engines. 

I’m very hesitant to make predictions about hot fusion power because so many have failed before me, most of the experts who today claim that usable fusion reactors are on track to be created soon have self-interested reasons for making those claims (usually they belong to an organization that wants money to pursue their idea), and I certainly lack the specialized education to muster any special insights on the topic. However, I can say for sure that the basic problem is that nuclear fusion reactions release large numbers of neutrons, which beam outward in every direction from the source of the reaction. When those neutrons hit other things, they cause a lot of damage at the molecular level. This means the interior surfaces of fusion reactors rapidly deteriorate, making it necessary to periodically shut down the reactors to remove and replace the surface material. The need for the shutdowns and repairs undermine fusion as a reliable and affordable power source. Of course, that could change if we invented a new material that was resistant to neutron damage and cheap (enough) to make, but no one has, nor are there any guarantees that a material with such properties can exist. 

An illustration of ITER, which is under construction. A man in an orange uniform has been drawn near the center of the image to convey the machine’s scale.

It would be comforting if I could say that these problems will be worked out by a specific year in the future, but I can’t. The “International Thermonuclear Experimental Reactor” (ITER) project is the world’s flagship attempt at making a hot fusion reactor, and it is massively over-budget, years behind schedule, and dogged by some critics who say it just won’t work for many technical reasons, including the possibility that the hollow-donut shaped “tokomak” reaction chamber is a fundamentally flawed design (there are alternative fusion reactor concepts with very different internal layouts). If all goes according to plan, ITER will be turned on in December 2025, but it will take another ten years to reach full operation. Lessons learned during its lifetime will be used to design a second, more refined fusion reactor called the “Demonstration Power Station” (DEMO), which won’t be running until the middle of the century. And only AFTER the kinks are worked out of DEMO do scientists envision the technology being good enough to build practical, commercial nuclear fusion reactors that could be connected to the power grid. So even under favorable conditions, we might not have usable fusion reactors until close to 2100, and due to many engineering unknowns, it’s also still possible that ITER will encounter so many problems in the 2030s that we will be forced to abandon fusion power as infeasible.  

Here’s an important point: Attempts to build nuclear fusion reactors started in the 1950s. If you had told those men that the technology would take at least 100 more years and tens or hundreds of billions of more dollars to reach maturity, they would have been shocked. The quest for fusion reactors has been full of staggering disappointments, false starts, and long delays that no one expected, and it could continue that way. With that in mind, I can only rate the film’s depiction of practical fusion reactors existing by 2321 as being “maybe accurate, maybe not.” 

There will be cybernetically augmented/enhanced humans. In the 2144 segment, we see people who have cybernetic implants in their bodies that give them abilities that couldn’t be had through biology. The first is a surgeon who has an elaborate, mechanical eye implant that lets him zoom in on his patients during operations, and the other is a man who has a much less conspicuous implant in his left cheek that seems to be a cell phone. Presumably, the device is connected to his inner ear or cochlear nerve. 

The technology necessary to make implanted cybernetics with these kinds of capabilities will be affordable and mature by 2144. However, few people will want implants that are externally visible and mechanical- or metallic-looking. Humans have a  innate sense of beauty that is offended by anything that makes them look asymmetrical or unnatural. For that reason, in 2144, people will overwhelmingly prefer completely internal implants that don’t bulge from their bodies, and external implants and prostheses that look and feel identical to natural body parts. That said, there will surely be a minority of people who will pay for things like robot eyes with swiveling lenses, shiny metal Terminator limbs, and other cybernetics that make them look menacing or strange, just as there are people today who indulge in extreme body modifications. 

People who like extreme body modifications will have even more avenues of self-expression in the future thanks to cybernetic implants and other technologies.

It’s important to point out that externally worn personal technologies will also be very advanced in 2144, will grant their users “superhuman” abilities just as simpler devices do for people today, and might be so good that most people will be fine using them instead of getting implants. Returning to the movie character with the mechanical eye, I have to wonder what advantages he has over someone with two natural eyes wearing computerized glasses that provide augmented vision. Surely, with 2144 levels of technology, a hyper-advanced version of Google Glass could be made that would let wearers do things like zoom in on small objects, and much more. The glasses could also be removed when they weren’t needed, whereas the surgeon could never “take off” his ugly-looking robot eye. Moreover, if the glasses were rendered obsolete by a new model in 2145, the owner could just throw away the older pair and buy a newer pair, whereas upgrading would be much harder for the eye implant guy for obvious reasons. 

Likewise, if someone wanted to upgrade his strength or speed, he could put on a powered exoskeleton, which will be a mature type of technology by 2144. It would be less obtrusive and would come with less complications than having limbs chopped off and replaced with robot parts. For this reason, I also think sci-fi depictions of people having metal arms and legs in the future that let them fight better are inaccurate. Only a tiny minority will be drawn to that. In any case, the ability to do physical labor or to win fights will be far less relevant in the future because robots will do the drudge work, and surveillance cameras and other forensic technologies will make it much harder to get away with violent crimes.

While wearable devices might be able to enhance strength and the senses as well as implanted ones, the former will not be nearly as useful in augmenting the brain and its abilities. We already have crude brain-computer interface (BCI) devices that are worn on a person’s head where they can read some of their thoughts by monitoring their brain activity. The devices can improve, and in fact might become major consumer products in the 2030s, but they’re fundamentally limited by their inability to see activity happening deep in the brain.

A modern brain-computer interface, worn over the head. Much more advanced versions of this will exist in 2144, but they will still have limits.

To truly merge human and machine intelligence and to amplify the human brain’s performance to superhuman levels, we’ll need to put computer implants around and in the brain. This means having an intricate network of sensors and electrodes inside the skull and woven through the tissue of the brain itself, where it can monitor and manipulate the organ’s electrical activity at the microscopic level. Brain implants like these would make people vastly smarter, would give them “telepathic” abilities to send and receive thoughts and emotions and “telekinetic” abilities to control machines, and would let them control and change their minds and personalities in ways we can’t imagine. Along with artificial intelligence, the invention of a technology that lets humans “reprogram” their minds and to overcome the arbitrary limits set by their genetics and early childhood environments would radically alter civilization and our everyday experience. It would be much more impactful than a technology that let you enhance your senses or body.

By 2144, augmentative brain implants will exist. Since they’ll be internal, people with them won’t look different from people today. Artificial organs that are at least as good as their natural equivalents will also exist, and will allow people to radically extend their lifespans by replacing their “parts” in piecemeal fashion as they wear out. Again, these will by definition be externally undetectable. The result would be a neat inverse of the typical sci-fi cyborg–the person would have any visible machine parts like glowing eyes, shiny metal arms, or tubes hanging off their bodies. They would look like normal, organic humans, but the technology inside of them would push them well beyond natural human limits, to the point of being impossibly smart, telepathic, mentally plastic, and immortal.

Languages will have significantly changed. In the 2321 film sequence, the aboriginal humans speak a strange dialect of English that is very hard to understand, while the group of advanced humans speak something almost identical to today’s English. Both depictions will prove accurate!

Skimming through Gulliver’s Travels highlights that the English language has changed over the last 300 years, and we should expect it to continue doing so, perhaps until, in another 300 it will sound as strange as the island dialect in the movie. This will of course be true for other languages.

At the same time, that doesn’t mean modern versions of languages will be lost to history, or that speakers of it won’t be able to talk with speakers of the 2321 dialects. Intelligent machines and perhaps other kinds of intelligent life forms we couldn’t even imagine today will dominate the planet in 2321, and they will also know all human languages, including archaic dialects like the English of 2021, and dead human languages like Ancient Greek, allowing them to communicate with however many of us there are left. 

Humans will also easily overcome linguistic barriers thanks to vastly improved language translation machines. The brain implants I mentioned earlier could also let people share pure thoughts and emotions, obviating the need to resort to language for communication. Whatever the case, technology will let people communicate regardless of what their mother tongues were, so a person who only knew 2021 English could easily converse with one who only knew 2321 English.

The knowledge that this state of affairs is coming should assuage whatever fears anyone has about English (or any other language) becoming “bastardized,” “degenerating,” or going extinct. So long as dictionaries and records of how people spoke in this era survive long enough to be uploaded into the memory banks of the first A.I., our idiosyncratic take on the English language will endure forever and be forever reproducible.

Finally and on a side note, the intelligent machines of 2321 will probably communicate amongst themselves using languages of their own invention. Instead of having one language for everything, I suspect they’ll have a few languages, each optimally suited for a different thing (for example, there could be one alphabet and syntax structure that is used for mathematics, another for prose and poetry, and others for expressing other modes of thought), and that they will all speak them fluently. As intricate and expressive as today’s human languages are, they contain many inefficiencies and possibilities for improvement, and it’s inevitable that machines will apply information theory and linguistics to make something better.

Sea levels will have noticeably risen. In the 2144 segment, there’s a scene where two characters look out the “digital window” of unit in a high-rise apartment building and see a partly flooded cityscape. One of the characters says that the structures that are partly
or fully underwater were part of Seoul, South Korea, and that the larger, newer buildings on dry land are part of “Neo-Seoul.” In spite of the distressed condition of such a large area, the metropolis overall is thriving and thrums with people, vehicle traffic, and other activity. I think this is an accurate depiction of how global warming will impact the world by 2144.

Let me be clear about my beliefs: Global warming is real, human industrial activity is causing part of it, sea levels are rising because of it, it will be bad for the environment and the human race overall, and it’s worth the money to take some action against it now. However, the media and most famous people who have spoken on the matter have grossly blown the problem out of proportion by only focusing on its worst-case outcomes, which has tragically misled many ordinary people into assuming that global warming will destroy civilization or even render the Earth uninhabitable unless we forsake all the comforts of life now. The most credible scientific estimates attach extremely low likelihoods to those scenarios. The likeliest outcome, and the one I believe will come to pass, is that the rate of increase in global temperatures will start significantly slowing in the second half of this century, leading to a stabilization and even a decline of global temperatures in the 22nd century.

The higher temperatures will raise sea levels by melting ice in the polar regions and by causing seawater to slightly expand in volume (as water warms, its density decreases), but the waterline in most coastal areas will only be 1/2 to 1 meter higher in 2100 than it was in 2000. That will be barely noticeable across the lifetimes of most people. Sea levels will have risen even more by 2144, inundating some low-lying areas of coastal cities, but people will adapt as they did in the film–by abandoning the places that became too flood-prone and moving to higher ground. Depending on the local topography, this could entail simply moving a few blocks away to a new apartment complex. Except maybe in the poorest cities, the empty buildings would be demolished as people left, so there wouldn’t be any old, ghostly structures jutting out of the water as there were in the future Seoul.

And instead of the ocean suddenly inundating low-lying swaths of town, forcing their abandonment all at once in the middle of the night, they would be depopulated over the course of decades, with individual buildings being demolished piecemeal once flood insurance costs hit a tipping point, or once that one particularly bad flood caused so much damage that the structure wasn’t worth repairing. Again, the broader changes to the metro area would happen so gradually that few would notice.

If we could jump ahead to 2144, we’d be able to see and feel the effects of global warming. Some parts of Seoul (and other cities) that were formerly on the waterfront would be underwater. However, as was the case in the film, we’d also see civilization had not only survived, but thrived, and that the expansion of technology, science and commerce had not halted due to the costs imposed by global warming. It would not have come close to destroying civilization, and people would realize that the worst was behind them.

Of course, that doesn’t mean the threat will have been removed forever. What I’ll call a “second wave” of global warming is possible even farther in the future than 2144. You see, even if we completely decarbonize the economy and stop releasing all greenhouse gases into the atmosphere, we humans will still be producing heat. Solar panels, wind turbines, hydroelectric dam turbines, nuclear fission plants, and even clean nuclear FUSION plants that will “use water as fuel” all emit waste heat as inevitable byproducts of generating electricity. Likewise, all of our machines that turn that use that electricity to do useful work, like a factory machine that manufactures reusable shopping bags or an electric car that drives people around town, also release waste heat. This is thermodynamically unavoidable.

This line chart depicts the consequences of a steady 2.3% increase in global energy consumption on the Earth’s future surface temperature.

The Earth naturally radiates heat into space, and so far, it has been able to radiate all the heat produced by our industrial activity as fast as we can emit it. However, if long-term global economic growth rates continue, in about 250 years we’ll pass the threshold,
and our machines will be releasing so much waste heat that the Earth’s surface will start getting hotter. The second wave of global warming–driven by an entirely different mechanism than the first wave we’re now in–will start, and if left unaddressed, it will render the Earth uninhabitable by very roughly 400 years from now. Based on all these estimates, 2144 will probably be an interregnum between the two waves of global warming.

Links:

  1. In 2018, the first clones were made of an adult monkey.
    https://www.cell.com/cell/fulltext/S0092-8674(18)30057-6
  2. The guy who won a Nobel Prize for cloning frogs thinks human cloning will probably start by 2062.
    https://www.businessinsider.com/nobel-prize-winning-scientist-human-cloning-will-be-possible-in-50-years-2012-12
  3. Even if we melted all the ice on Mars and released all the CO2 trapped in its rocks, the resulting atmosphere would only be 7% as thick as Earth’s. That’s not good enough for humans to breathe, or to raise surface temperatures above freezing.
    https://www.nasa.gov/press-release/goddard/2018/mars-terraforming
  4. The Intergovernmental Panel on Climate Change (IPCC) thinks global warming “doomsday” scenarios are very unlikely. The rate of global warming will significantly drop in the second half of this century, and global temperatures will probably stabilize in the next century.
    https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter12_FINAL.pdf
  5. Assuming a 2.3% annual growth rate in global energy usage, the waste heat will make Earth start warming in 250 years, and it will be uninhabitable in about 400.
    https://dothemath.ucsd.edu/2011/07/galactic-scale-energy/