Roundup of interesting articles, October 2019

Chemists are getting closer to finding ways to cheaply make bulk quantities of the hallucinatory molecule found in magic mushrooms. This will surely be awesome for…somebody.
https://gizmodo.com/magic-mushroom-chemical-harvested-from-bacteria-for-t-1838624959

The story about the recent “AI-generated drug” was oversold, and the drug will benefit only about 180 people in the U.S.
https://blogs.sciencemag.org/pipeline/archives/2019/09/30/an-ai-generated-drug

The discovery of “GlycoRNA” puts into relief how little we know about intracellular signaling and enzymology.
https://blogs.sciencemag.org/pipeline/archives/2019/10/03/enter-glycornas

Geneticists have made “hornless bulls.” This benefits animal welfare since it’s harder for the bulls to hurt each other, and because chopping off horns is painful.
https://www.bbc.com/news/science-environment-49962130

Many serious health problems, such as heart attacks and diabetes, are partly genetic, and each day we’re discovering new genes that cause them.
https://www.nature.com/articles/s41598-019-51258-x

A new study of population genetics suggests that the poor, rural areas of Britain are like that because most of the smart people left for better and more interesting lives in the cities (mainly London), leaving only lower-IQ people behind to breed. IQ score is about 50% genetic.
https://www.the-scientist.com/news-opinion/opinion–the-nature-of-social-inequalities-in-great-britain-66607

23andMe’s 4-million-person genetic database reveals how many people are living with undetected chromosomal anomalies.
https://www.theatlantic.com/science/archive/2019/10/when-you-have-more-dna-one-parent-other/599812/

If China or Russia hacked into the huge commercial database of American user-submitted DNA samples, it would be a disaster.
https://www.technologyreview.com/s/614642/dna-database-gedmatch-golden-state-killer-security-risk-hack/

A new genetic engineering technique called “prime editing” allows scientists to edit DNA with unprecedented accuracy and low error rates.
https://www.smithsonianmag.com/science-nature/prime-editing-new-form-crispr-technology-make-gene-editing-more-precisie-180973381/

Stimulating the brain with electricity can cure depression.
https://www.nytimes.com/2019/10/04/health/deep-brain-stimulation-depression.html

Farm scientists have developed a newer, better type of apple called the “cosmic crisp.” Ain’t science great?
https://apnews.com/b108210233784b3fb1753d1bf6315a14

A network of tree-mounted microphones spread across central Africa to count elephant populations and poaching activity shows how a mass surveillance network could be created with mostly simple technology. I predict that someday, the whole surface of the Earth will be continuously monitored.
https://www.npr.org/2019/10/25/760487476/elephants-under-attack-have-an-unlikely-ally-artificial-intelligence

Facebook and Google scan any alphanumerical characters they find in user-uploaded photos, and then embed those characters in the image file’s description. That means you can type in a car license plate number or a gun’s serial number into the Google or FB search bar, and find any photos of the car or gun.
https://www.thefirearmblog.com/blog/2019/10/22/google-firearm-serial-numbers/

The U.S. and Britain hit “peak resource use” in 2007 or 2008, meaning resource consumption of things like cement, copper and fertilizer stopped growing in spite of the fact that GDP kept increasing. This is good news since it means technology is allowing us to use existing resources more efficiently, meaning less waste.
https://reason.com/2019/10/09/the-economy-keeps-growing-but-americans-are-using-less-steel-paper-fertilizer-and-energy/

Objects made of polystyrene plastic break down into CO2 on scales measurable in as little as decades, not millennia as is commonly believed. I predict that all the trash produced by humans will someday be cleaned up.
https://pubs.acs.org/doi/10.1021/acs.estlett.9b00532

Here’s a fascinating way to slow down global warming: Deploy autonomous barges to the Arctic Ocean that make hexagonal icebergs.
https://www.cnn.com/style/article/refreeze-arctic-design-scn/index.html

After the Fukushima nuclear reactor meltdown, Japan temporarily shut down all its other reactors for safety inspections. This caused the price of energy in Japan to skyrocket, and many people couldn’t afford to pay their heating bills. The number of people–overwhelmingly poorer elderly people–who froze to death as a result far exceeded the death toll from the meltdown itself (only one person dead from radiation exposure).
https://www.nber.org/papers/w26395

“Smart plugs” are a versatile device I’ve never heard of: They’re small, Wifi-connected plugs that you insert into your electrical outlets, letting you remotely turn the electricity on or off in those outlets, in turn controlling any devices plugged into them.
https://www.amazon.com/Gosund-Compatible-Required-appliances-Certified/dp/B079MFTYMV/

Tesla just bought a Canadian company that builds robots that assemble batteries. It takes fewer workers to build an electric car than a gas-powered car because the former has fewer parts . Car factory jobs will disappear even faster once guys like Elon Musk figure out how to make better robot workers.
https://business.financialpost.com/technology/battling-battery-cell-scarcity-and-manufacturing-hiccups-tesla-quietly-buys-ontario-automation-firm

The Alexa AI personal assistant now has a Samuel L. Jackson voice. It even curses at you.
https://www.usatoday.com/story/tech/2019/09/25/samuel-l-jackson-first-celebrity-voice-amazon-alexa/2447992001/

Google’s OpenAI company just build a robot hand that can solve Rubik’s Cubes. It’s an impressive demonstration of pattern recognition and physical dexterity.
https://mobile.twitter.com/OpenAI/status/1184135128869527552

Google’s DeepMind AI just became a “grandmaster” in StarCraft 2, meaning it can beat 99.8% of humans. When the company started this project two years ago, its AI could barely perform basic in-game functions and couldn’t beat anyone. Note that DeepMind has been handicapped in that it can’t issue commands during games faster than human players can (about 264 actions per minute).
https://www.nature.com/articles/s41586-019-1724-z

A summary of how future quantum computers will benefit us:
https://www.quantumrun.com/prediction/how-quantum-computers-will-change-world-future-computers

Google says it has achieved quantum supremacy by building a quantum computer that can do a specific type of math calculation in 200 seconds that the best classical computer would take 10,000 years to do.
https://www.nature.com/articles/s41586-019-1666-5

IBM, which made the current world’s best classical computer, quickly issued a rebuttal to Google’s claim.
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/

And Scott Aaronson, a world-renowned theoretical computer scientist, wrote a blog post about both of those press releases, which essentially says Google is right, but by a narrower margin than they claimed, and that all disagreement about this issue will vanish in a few years once quantum computers improve so much that the performance gulf between them and classical computers gets too wide for anyone to contest.
https://www.scottaaronson.com/blog/?p=4372

Here’s an awesome mini-documentary about “extreme ultraviolet lithography”–a new technique for making computer chips even smaller and better than they are. I wish everything on TV were this intelligent and polished.
https://youtu.be/f0gMdGrVteI

The man who discovered the first exoplanet just won a Nobel Prize in physics, believes that aliens exist, and thinks we could build a telescope in as little as 30 years able to verify whether exoplanets have Earth-like atmospheres.
https://www.telegraph.co.uk/news/2019/10/08/cambridge-university-planet-hunter-says-mankind-could-find-alien/

Edward Snowden said he searched through the vast archive of secret U.S. intelligence files for proof of aliens and found none. Keep in mind that he’s an international fugitive and has nothing to lose anymore and no reason to cover up anything for the U.S. government.
https://www.usatoday.com/story/news/nation/2019/10/24/whistleblower-edward-snowden-says-us-government-isnt-hiding-aliens/4081616002/

The Peacekeeper ICBM’s inertial guidance system was a work of art.
https://www.thedrive.com/the-war-zone/30254/this-isnt-a-sci-fi-prop-its-a-doomsday-navigator-for-americas-biggest-cold-war-icbm

The U.S. Air Force’s X-37B autonomous “space plane” has landed after two years in orbit. Its purpose is secret.
https://apnews.com/51cbcc00c49c49249f258db9de6b1427

Here are some interesting early designs for what would later become the International Space Station.
http://www.astronautix.com/d/dualkeelspaestation-1985.html
http://www.astronautix.com/p/powertowersestation-1984.html

China has nearly finished a massive new military shipyard that it will use as an aircraft carrier factory. I predict that in about 20 years, China’s military will be strong enough to have at least a 50% chance of defeating the U.S. military in the western Pacific. However, it’s unclear if China will choose to fight even if it has the advantage. They’d much prefer to get what they want through diplomatic and economic pressure, and military intimidation.
https://www.reuters.com/article/us-china-military-carrier-exclusive-idUSKBN1WW0KM

More ships sunk during the Battle of Midway were found. Recall my prediction: [Between 2101 and 2200] Every significant archaeological site will be excavated and every shipwreck found. There will be no work left for people in the antiquities.
https://www.dailymail.co.uk/sciencetech/article-7586959/Deep-sea-explorers-seek-sunken-World-War-II-ships.html

Here’s a fascinating exploration of the different WWII-era design and manufacturing philosophies of the Americans, Germans, and Soviets. It might be unfairly critical of the Germans since it forgets that their smaller pool of manpower might have rightly forced them to focus on making their tanks higher in quality at the expense of quantity.
https://www.historynet.com/profiles-cold-steel-making-tanks.htm

Photos from a modern Russian tank factory, where T-72 tanks are upgraded. Note the close-up photo below, which clearly shows the “Kontact-5” explosive reactive armor attached to the tank turret’s exterior. The turret itself has a smooth, rounded shape, and it only looks angular thanks to the blocks of Kontact-5.
https://www.dailymail.co.uk/news/article-7589915/Fascinating-photographs-construction-testing-deadly-45-ton-T-72B3-battle-tank.html

T-72B3 tank

A new study challenges the belief that humanity is getting less warlike.
https://phys.org/news/2019-09-international-conflict-isnt-declining-analysis.html

The transhumanist movement probably began in the 1920s.
https://lithub.com/early-visions-of-transhumanism-were-wild/

Thin, flexible LED sheets like this will someday be incorporated into clothing. I predict this will lead to personal “cloaking devices” made of clothes studded with the LEDs, e-ink sheets, or some other metamaterial and pinhole cameras colored e-ink. The cameras will monitor the appearance of the person’s surroundings and tell the display pixels to change their colors to match. Ski masks made of the same material would let wearers change their facial features, fooling most face recognition cameras and certainly fooling the unaided eyes of humans. The pixels could also be made to glow bright white, allowing the wearer to turn any part of his body into a flashlight. 
https://youtu.be/5fy91AdzfJw

An important weakness of small, flying drones is that they won’t be able to fly when it’s windy, raining or snowing. This reliability problem will dash any plans to create an economy where the drones have replaced ground vehicles for delivering goods, and seriously hinder efforts to make a military force comprised mainly of small attack drones.
https://now.tufts.edu/articles/how-do-birds-survive-storms-and-other-harsh-weather

Nihil sub sole novum

While writing my recent blog entry on The Physics of the Future, I discovered that author Michio Kaku’s description of the “Kardashev Scale” was wrong. Kaku said that a “Type 1” civilization on the Kardashev Scale was one that was “planetary” in scope, character and energy consumption, and that trends suggested humans wouldn’t achieve this rank until the year 2111. Kaku said that, we were in fact so pitiful at the time of the book’s writing that our civilization was only “Type 0.”

However, in Dr. Nikolai Kardashev’s science paper that established the Scale, he defined a “Type 1” civilization as being one that consumed as much energy as humans did at that time. That means humanity has been a Type 1 civilization since 1964! Kardashev also didn’t say anything about there being a “Type 0” classification.

Convinced that I alone knew of an embarrassing mistake made by one of the world’s foremost pop-science talking heads, I set out to write a blog entry about it titled “The misused and useless Kardashev Scale.” I spent an afternoon reading Kardashev’s original paper and its cited articles to actually understand it, and in other research found online articles and videos where even more smart people had cluelessly espoused a flawed definition of the Scale. This thing was even bigger than I had thought, and I was about to blow the lid off of it! This would finally put my lousy blog on the map!

And then, I found out someone else had already written about this very subject, and had done so with superior prose than I could probably write. J.N. “Nick” Nielsen beat me by five years with his article “What Kardashev Really Said.”

What a waste of my time.

It got me thinking about how much human effort is duplicative, and how much more efficient and creative we would be if we didn’t needlessly reinvent the wheel. Of course, this is impossible for mere humans since never being derivative requires perfect knowledge of everything that everyone else has already said, done, or created, and our minds are incapable of holding that much information. However, it’s easy to see how technology could change this.

Google Image search results for “red robin bird”

Imagine a smartphone app that was connected to the device’s camera. I’ll call the app “Copycat.” Every time you turn on your camera, Copycat starts watching what’s visible through the viewfinder. Once it detects that you’re steadying the camera to prepare to take a still photo, the app would compare the scene in front of you with trillions of other photos available for free on the internet. If you were about to take a picture that looked identical or nearly identical to one that already existed, Copycat would warn you, show you an image of the other picture, and tell you if there were any ways you could, standing there, produce a new type of image. Maybe snap the photo of the songbird from low on the ground, or walk 10 feet to the right to photograph it with that stone building in the background.

This level of technology is well within reach: the image analysis and recognition feature is no different from Google’s “reverse image search.” The second feature could easily arise from a set of deep learning programs that are trained to recognize visually well-composed and aesthetically pleasing photo compositions, and to come up with ways to reposition the elements within an image to raise or maximize those values. Upload enough training data, and it will figure it out.

Copycat is a highly specific example, but it illustrates technology’s potential to help people make better use of their time by warning them before they do something that has already been done. And an important ancillary benefit is that it will remind us of valuable and interesting things people have already done, but which may have been largely forgotten. In showing you images, Copycat might make you aware of long-dead bird photographers you had never heard of, spurring you to research them further and to beautify your house with framed prints of their (free) artwork.

Along with boosting the originality of artwork, music, and writing, this sort of technology would be invaluable to scientists and engineers who are deciding how to spend their scarce time and R&D money. A machine that had memorized the full body of scientific literature and patents could, respectively, tell a scientist which things had not been researched and tell an engineer which things had not been invented. The result would be no resources wasted on duplicative projects, and an acceleration of scientific and technological advancement, merely due to a sharper grasp of what is already known.

Links

  1. https://www.pcmag.com/article/338339/how-to-do-a-reverse-image-search-from-your-phone
  2. https://www.businessinsider.com/googles-ai-can-tell-how-good-your-photos-are-2017-12

Roundup of interesting articles, September 2019

The best AI-generated human faces of 2014 (left) and 2019 (right).

AI-generated human faces from 2014:
https://arxiv.org/pdf/1406.2661.pdf

AI-generated human faces from 2019:
https://www.fastcompany.com/90406423/these-ai-generated-people-are-coming-to-kill-stock-photography

Google claims to have achieved “quantum supremacy” in a lab experiment…kind of.
https://www.wired.com/story/why-googles-quantum-computing-victory-is-a-huge-deal-and-a-letdown/

A Google neural network AI scored a 90% on a standardized test of reasoning ability given to eighth grade students in New York.
https://www.nytimes.com/2019/09/04/technology/artificial-intelligence-aristo-passed-test.html

Electric cars have fewer parts than gas-powered cars, so they are simpler and faster to build, and break less often. This is bad news for people who work at car factories and mechanic shops.
https://apnews.com/c70d4274a69643bba37667585dbee7aa

Amazon has just announced a bulk buy of 100,000 electric delivery trucks, which will jump-start that whole vehicle sector. I’ve predicted before that, once a big company does a bulk buy of thousands of autonomous delivery trucks, the writing will be on the wall for human truck drivers.
https://qz.com/1712151/amazon-orders-100000-electric-delivery-trucks/

One guy has taken it upon himself to drive around his native Zimbabwe to fill in Google Street View imagery. I like his spirit, but it’s kind of pointless since all the blank spots in Street View will very rapidly fill in once autonomous cars become common. The cars will bristle with cameras pointed in every direction, and opting to sell the footage to Google will be a matter of clicking one button.
https://www.npr.org/2019/09/22/760572640/hes-trying-to-fill-in-the-gaps-on-google-street-view-starting-with-zimbabwe

Chinese police used flying drones to find a fugitive who had been at large for 17 years. He was living in a remote camp in the wilderness. Autonomous aircraft will be able to map parts of the planet inaccessible to cars, and hence will be integral to mapping and surveillance.
https://www.bbc.com/news/world-asia-china-49874969

A “vacuum airship” would be a dirigible filled with nothing instead of helium or hydrogen. The exterior air pressure would be so great that its skin would need to be built of super-strong, nano-engineered materials.
https://en.wikipedia.org/wiki/Vacuum_airship

President Trump accidentally Tweeted a classified photo taken by one of America’s best spy satellites, giving insights into how high-res their cameras are. Contrary to urban myth, license plates and facial features can’t be resolved, but individual humans on the ground could be seen (and counted) as small blobs of color.
https://www.npr.org/2019/08/30/755994591/president-trump-tweets-sensitive-surveillance-image-of-iran

In theory, a planet with just 2% of the Earth’s mass could, if located slightly closer to a Sun like ours than the Earth is, have liquid water and hence organic life. (Note: The Moon is 1% Earth’s mass.)
https://phys.org/news/2019-09-redefines-limit-planet-size-habitability.html

The Kardashev Scale is widely misquoted and misunderstood:
1) According to Kardashev’s original science paper on the matter, humanity had ALREADY achieved “Type 1” status in 1964.
2) The paper only had three civilization classifications: Type 1 (most energy on the planet being consumed by the civilization), Type 2 (all of the star’s energy harnessed), and Type 3 (all of the galaxy’s energy harnessed). Nothing was said of “Type 0” or “Type 4” status.
https://www.centauri-dreams.org/2014/03/21/what-kardashev-really-said/

When we meet intelligent aliens, even if we can’t understand each others’ languages, we’ll be able to use math and chemistry to agree on what “right” and “left” mean.
https://en.wikipedia.org/wiki/Wu_experiment

The U.S. Navy has confirmed that three UFO videos leaked to the public in late 2017 are real, and that they don’t know what the flying objects were.
https://www.theblackvault.com/documentarchive/u-s-navy-confirms-videos-depict-unidentified-aerial-phenomena-not-cleared-for-public-release/

The CIA was out of control in the 50s and 60s, and Fort Detrick, MD was its secret base for developing and testing mind-control drugs, poisons, and biological weapons.
https://politi.co/2I7zNfE

Doctors found a way to triple the time that human livers can be preserved outside a body for transplantation. It involves injecting the organs with preservative fluid and cooling them to below freezing. Don’t write off the possibility of whole-body human cryopresevation in the future.
https://www.bbc.com/news/health-49632609

Using donor eggs and IVF, a 74-year-old woman in India got pregnant and gave birth to twins, making her the oldest known mother. (While postmenopausal women’s ovaries don’t make eggs anymore, their uteri remain functional) The physical and mental strain of childbirth was so great that it caused her a stroke and gave her husband a heart attack, and both were sent to the ICU right afterward.
https://www.nzherald.co.nz/lifestyle/news/article.cfm?c_id=6&objectid=12267791

The Sahara region oscillates between wet and dry epochs once every 20,000 years. Also, the current Sahara Desert wouldn’t be as large as it is if not for millennia of human-owned livestock overgrazing at its margins. We could “green” parts of it today, with existing technology and relatively little money.
https://phys.org/news/2019-01-sahara-swung-lush-conditions-years.html

Only one insect species is indigenous to Antarctica.
https://en.wikipedia.org/wiki/Belgica_antarctica

Facebook’s virtual reality group has made impressive progress making what they call “Codec Avatars.” A person wears a visor over his face, which has cameras that record the movements of his head, face muscles, eyes, and mouth, and then the footage is streamed to a second person also wearing a visor, who sees the disembodied image of the first person’s head floating in front of them. Various algorithms are used to correct for camera distortions and blank spots.
https://twitter.com/pacrimgirl/status/1176937590756270080

Scientists invented a device that can convert a flat plate’s excess heat into electricity to power an LED bulb. In the future, we’ll do a lot of wring energy out of waste heat.
https://www.cell.com/joule/abstract/S2542-4351(19)30412-X

Amazon pledged to get 100% of its energy from clean sources by 2030.
https://www.cnbc.com/2019/09/19/jeff-bezos-speaks-about-amazon-sustainability-in-washington-dc.html

Here’s more evidence that body weight and obesity are partly genetic: Thin adults tend to have more mitochondria in their fat cells, and different mitochondrial DNA, than average-weight adults.
https://www.ncbi.nlm.nih.gov/pubmed/31374571

It’s actually not true that all siblings share 50% of their genes. Thanks to the random reassortment of genes that happens during meiosis (the biological process that makes sperm and eggs), it’s quite possible for two full siblings to share as little as 40% and as much as 60% of their DNA. 50% is merely the population-wide average (3.6% is the standard deviation).
http://blogs.discovermagazine.com/gnxp/2011/02/why-siblings-differ-differently/#.XZJTyihKiUl

The facts that Earthly life forms have four DNA nucleotides and that a series of three nucleotides codes for each amino acid could mean that ‘a quantum-mechanical process is actually somehow at the root of molecular biology.’ By extension, it also means that the way we store genetic information and translate it into molecules is the most efficient way possible in an organic substrate.
https://blogs.sciencemag.org/pipeline/archives/2019/09/18/and-now-for-a-bit-of-quantum-mechanics

This is a good idea: Make a fighter version of the T-X trainer jet, and use it for patrolling U.S. airspace. This would be much cheaper than using F-15s and F-22s for that role. We could also sell the T-X to friendly Third World countries that didn’t have much money.
https://warontherocks.com/2019/02/blurring-the-lines-part-i-a-promising-new-trainer-aircraft-and-its-combat-variants

Eighteen drones and 7 cruise missiles were launched at Saudi Arabia during the recent attack that disabled much of the country’s oil industry. The wreckage shows the weapons were Iranian-made. Iran’s government denies involvement, and they do have a slender reed to lean on since it’s possible that anti-Saudi rebels launched the weapons from outside Iran.
https://apnews.com/9fb95c0d28c84fd0bf10817dea3ddaab

Iran’s air force still flies pre-1979 planes because no other country wants to sell them new ones and deal with the diplomatic backlash and sanctions from other countries.
https://nationalinterest.org/blog/buzz/foreign-fighter-jets-iran-would-buy-if-it-was-allowed-79891

China just launched a fifth Type 055 destroyer. They’re practically rolling off an assembly line.
https://www.janes.com/article/91450/china-launches-fifth-type-055-destroyer-for-plan

China ALSO just launched a Type 075 helicopter carrier, after starting construction just five months ago.
https://www.thedrive.com/the-war-zone/30011/china-just-launched-its-huge-and-incredibly-quickly-built-amphibious-assault-ship

‘There are some clear tactical benefits to [Egypt’s military HQ building] design. Spreading the MoD’s functionality across multiple interconnected facilities offers survivability from limited attacks. Giving each service two well-spaced octagons also offers some redundancy should one be struck, at least depending on the functions and systems each one holds. Like America’s Pentagon, having three distinct ‘nested’ structures within each octagon also provides resiliency if one part of the facility is attacked.’
https://www.thedrive.com/the-war-zone/29762/egypts-new-octagon-ministry-of-defense-complex-looks-like-an-alien-base-from-space

Russia’s “Ratnik” infantry equipment modernization program unsurprisingly failed in its promise to put every Russian soldier in cyborg power armor, but its more conservative elements–which involved copying elements from more advanced U.S. helmets, body gear, and other accessories–succeeded.
https://nationalinterest.org/blog/buzz/major-armor-and-uniform-upgrade-russian-military-wanted-here-78496

Eighty years ago, the Nazis invaded Poland, sparking WWII. What is often forgotten is that the Soviets also invaded Poland from the east. Britain and France only declared war on Germany for this offense.
https://youtu.be/oFTtuHxxBLo

U.S. forces fought a brief war in Korea in 1871.
https://nationalinterest.org/blog/the-buzz/1871-america-invaded-korea-heres-what-happened-24113

Will future technologies end capitalism? No.

Singapore, one of the world’s richest and most capitalist countries

 

One annoying theory I keep encountering in the futurist community is that capitalism will be undermined by future technologies, and the world will switch to a new economic system. Proponents of that theory usually put forth the following scenario:

  1. Robots and artificially intelligent computers (AIs) will get so advanced that they’ll take over all human jobs. The human unemployment rate will reach 100%, and therefore capitalism will no longer exist.
  2. Every human will have a robot servant and a Star Trek replicator in his house. The robots will make manual labor free, and the replicators will make physical objects (food, water, clothes, medical pills, spare parts for the robot, etc.) free. Since everything will be free and humans won’t have to leave their houses anymore to get anything, capitalism will no longer exist.

The flaws in these theories stem from a basic misunderstanding of what “capitalism” is. Let’s remember its definition:

‘an economic system characterized by private or corporate ownership of capital goods, by investments that are determined by private decision, and by prices, production, and the distribution of goods that are determined mainly by competition in a free market(source: Merriam-Webster dictionary)

And let’s also remind ourselves what “capital goods” are:

machines and tools used in the production of other goods (source: Dictionary.com) 

Star Trek replicators and robot servants are both capital goods since they are machines that make other goods. More specifically, they take simple things and transform them into more valuable things. The replicator would use its nanomachines to convert air and dirt into T-bone steaks and Tesla car parts, and the servant robot would cook the steaks on a grill for you and put the car parts together to build a complete Tesla.

So quite ironically, futurists who envision a world where “capitalism has collapsed” because every human owns a servant robot and a replicator are actually envisioning a world that is MORE capitalistic than today’s. After all, people today have far weaker abilities to manufacture anything at home, and they own few if any capital goods.

Moreover, the notion that mass unemployment caused by machines taking all jobs away from humans will be the “end of capitalism” makes no sense. In such a scenario, a capitalist economy would still exist, but would be dominated by machines making things for and consuming things made by each other, with humans participating in those markets at the margins, mostly as consumers. Where would we get the money to buy anything from the machines? Presumably a universal basic income (UBI), which would be financed by taxing the machines. 

If that arrangement sounds fanciful or anti-capitalistic, realize that it’s not–it’s merely an extension of what exists today. Singapore is widely considered to be the “most capitalist” country in the world, yet 34% of Singaporeans don’t have jobs, thanks to being too young, too old, or disabled. Most of them survive off of cash transfers and free services provided by the state, and/or by able-bodied family members who have sources of gainful income. The fact that 1/3 of Singaporeans don’t have jobs and are living off of someone else’s largesse doesn’t mean the country is not capitalist. 

The post-work, post-scarcity, UBI condition that many futurists predict is coming is not “post capitalist” or “socialist”–it’s the same thing as Singapore today, but with the other 2/3 of humans ALSO living off of free money and free services, made available by taxing the able-bodied members of society (machines). It’s a world where most land and capital is still privately owned and traded, where labor is freely traded for wages, and where innovation and new discoveries still happen, but where most of the players in the economy (and in all other areas of endeavor such as science and the arts) are intelligent machines instead of humans.

In conclusion, I think the belief that a machine-dominated, post-scarcity, post-human-work economy will not be capitalist is mistaken, and stems from a basic misunderstanding of what “capitalism” is. The futurist community attracts oddballs of many types, including anarchists and socialists, and their poorly reasoned and wishful advocacy of the argument that “technology will destroy capitalism” is the reason this idea exists at all, and not because it is backed by logic or any economic trend data. Capitalism is the most efficient way to allocate most resources, and intelligent machines will doubtless come to see that and will practice capitalism for their own benefit once they come to dominate the economy.

Roundup of interesting articles, August 2019

A Finnish space company called “Iceye” has launched radar satellites that produce sub-meter fidelity images of the Earth, at a fraction of the price of any competitor.
https://www.bbc.com/news/science-environment-49253951

During the Apollo program era, NASA considered building a gigantic space rocket that would be towed out to sea and launched while half-submerged in water.
https://en.wikipedia.org/wiki/Sea_Dragon_(rocket)

One of Russia’s self-touted, nuclear-powered missiles accidentally blew up, killing seven Russians and releasing some radioactivity.
https://www.yahoo.com/news/fallout-russias-mysterious-missile-disaster-160700403.html

The U.S. pulled out of the Cold War-era Intermediate Range Nuclear Forces Treaty, mostly because Russia has been violating it for years.
https://www.pbs.org/newshour/world/u-s-and-russia-pull-out-of-cold-war-era-arms-control-treaty

Russia’s sole aircraft carrier is obsolete, and had problems from the time it was under construction. They’d be much better off decommissioning it and building never ships with the money they save.
https://nationalinterest.org/blog/buzz/strange-reason-why-russias-aircraft-carrier-leaves-smoke-trails-71031

Russia is experimenting with converting some of its old T-72 tanks into autonomous vehicles. As I’ve said before, robot crews could breathe new life into older weapons and keep them in service longer, but they’d be inferior to newer weapons not designed around the human form at all.
https://www.janes.com/article/90554/russia-develops-unmanned-t-72s

I agree with this list of “Worst American Generals,” but would add William Winder, who served ignominiously in the War of 1812.
https://nationalinterest.org/blog/buzz/military-history-you-might-want-forget-5-worst-us-generals-ever-76236

This is the 80th anniversary of the cynical Molotov-Ribbentrop Pact between the Nazis and Soviets.
https://reason.com/2019/08/23/the-80th-anniversary-of-the-nazi-soviet-pact/

In the desperate 1948 War for Independence, Israel relied on a handful of modified WWII German Me-109 fighter planes for airpower.
https://nationalinterest.org/blog/buzz/how-strange-nazi-germanys-fighter-planes-helped-save-israel-74311

Britain once had the world’s best army. Today, it can’t even muster 75,000 men (out of a population of 66 million).
https://www.bbc.com/news/uk-49365599

One of Iran’s busted-up F-4 Phantoms crashed.
https://nationalinterest.org/blog/buzz/irans-air-force-just-lost-fighter-jet-us-made-f-4-phantom-just-went-down-71446

For some reason, the USAF hasn’t scrapped any of its F-117 stealth fighters even though they were retired in 2008. They’re all sitting in an airplane hangar.
https://www.thedrive.com/the-war-zone/29606/51-f-117-nighthawk-stealth-jets-remain-in-inventory-only-one-destroyed-in-last-two-years

Ejecting Turkey from the F-35 program is a lose-lose for everyone but Russia.
https://worldview.stratfor.com/article/real-cost-ejecting-turkey-f-35-program-trump-administration-erdogan-russia

The U.S. Navy’s P-8A “Poseidon” planes can find submarines by dropping sonar buoys into the water, and then blow the subs up by dropping torpedoes.
https://nationalinterest.org/blog/buzz/poseidon-americas-secret-weapon-slaughter-chinas-stealth-submarines-76866

China is building three helicopter carriers. The U.S. has nine.
https://www.thedrive.com/the-war-zone/29526/chinas-new-amphibious-assault-ship-is-a-monster

‘[U.S. Navy] Sailors “overwhelmingly” preferred to control ships with wheels and throttles [instead of touchscreen displays], surveys of crew found.’
https://www.bbc.com/news/technology-49319450

The “Adaptable Deck Launcher” is a little larger than a 20-foot shipping container, can be installed on the deck of many types of ships, and can fire four missiles that can strike targets in the air, on the sea, on land, or underwater (anti-sub). This is very similar to Russia’s containerized ship missile systems.
https://www.thedrive.com/the-war-zone/29335/this-bolt-on-launcher-can-give-nearly-any-ship-the-same-weaponry-as-u-s-navy-destroyer

This is a simple but informative video about the U.S. Navy’s new “Radar Modular Assemblies.” A simple but very useful design.
https://youtu.be/BPGcW4Lj4fc

Awesome! The U.S. is funding a program to get NATO countries to FINALLY rid themselves of Soviet-era weapons and buy U.S.-made replacements. (I wonder if the surplus junkers will be sold to Ukraine?)
https://www.defensenews.com/global/europe/2019/05/29/inside-americas-multimillion-dollar-plan-to-get-allies-off-russian-equipment/

There’s now a parachute system for small helicopters.
https://philip.greenspun.com/blog/2019/08/05/parachute-from-a-cirrus-stuck-on-top-of-a-helicopter/

A gene mutation that may let people function on only six hours of sleep has been found.
https://www.sciencedaily.com/releases/2019/08/190828111247.htm

Homosexuality is slightly genetic.
https://apnews.com/ef30900e20c04a5e8411ad7ddf5cc2c3

There’s no evidence that microplastics in our food and water hurt human health. They simply pass through the human digestive system.
https://www.bbc.com/news/health-49430038

The first new tuberculosis drug in 50 years was approved.
https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-resistant-forms-tuberculosis-affects-lungs

People who take the newest Ebola medicines have a 90% survival rate.
https://www.bbc.com/news/world-africa-49326505

AI can now diagnose some types of breast cancer MORE accurately than human doctors.
https://www.eurekalert.org/pub_releases/2019-08/uoc–aic080619.php

Most of the people who say they are over 110 years old are actually lying or mistaken thanks to poor birth certificate recordkeeping. “As soon as a state starts keeping good records of when people are born, there’s a 69 to 82 percent fall in the number of people who live to the age of 110.”
https://www.vox.com/2019/8/8/20758813/secrets-ultra-elderly-supercentenarians-fraud-error

The meat industry is massively wasteful, and switching to meat substitutes like Impossible Burgers or lab-grown meats would save huge amounts of time and energy. This article is also awesome since it mentions the “carcass balancing problem.”
https://www.wired.com/story/alt-meat-trounces-animal-meats-massive-inefficiencies/

Are ‘algae shakes’ and ‘algae powders’ the future of food?
https://massivesci.com/articles/iwi-algae-protein-nannochloropsis-food-essential-amino-acids/

Empress trees grow very rapidly, and if we planted billions of them, they could sequester a lot of carbon from the atmosphere. I think the best strategy would be to figure out a way to cheaply synthesize graphite from CO2, and to dump it in ocean trenches and disused mines.
https://www.bloomberg.com/news/features/2019-08-02/we-already-have-the-world-s-most-efficient-carbon-capture-technology

The man who created the Gaia hypothesis now thinks that intelligent machines will take over the world.
https://www.nbcnews.com/mach/science/cyborgs-will-replace-humans-remake-world-james-lovelock-says-ncna1041616

Engineer and tech tycoon Jeff Hawkins thinks we could make a human-level AI in 20 years if we just do what he says!
https://www.lesswrong.com/posts/FoJSa8mgLPT83g9e8/jeff-hawkins-on-neuromorphic-agi-within-20-years

Video game pioneer John Carmack thinks “we will potentially have clear signs of AGI maybe as soon as a decade from now. “
https://youtu.be/udlMSe5-zP8

In the future, will there be shapeshifting robots made of small cubes? When you think about it, the ideal body form is one that is fungible.
https://www.bloomberg.com/news/articles/1999-01-24/the-shape-of-robots-to-come

The era of the ageless, all-CGI actor is here: Will Smith and Robert De Niro have films coming out featuring hyper-realistic CGI versions of their younger selves.
https://www.hollywoodreporter.com/behind-screen/rise-all-digital-actor-1229783

It won’t be long before people can make immortal digital avatars of themselves that their loved ones can interact with long after they die.
https://www.washingtonpost.com/technology/2019/08/29/hey-google-let-me-talk-my-departed-father/

It’s now possible to use deepfake technology to synthesize anyone’s voice and have them read an entire audiobook. Listeners can pick which voice they prefer.
https://www.bbc.com/news/technology-49329650

Deepfake technology is also being used to make customized teaching lessons for people. Someday, it will be possible to put on augmented reality eyewear with headphones and a forward-facing camera, and to see a semi-intelligent AI teacher in front of you. Virtual objects would appear in front of you, and real-world objects in your field of view would be highlighted, so your machine teacher could do something like walk you through a complex car repair task. (Is this how the Borg started out?)
https://www.fanaticalfuturist.com/2019/08/edtech-company-udacity-uses-deepfake-tech-to-create-educational-videos-automatically/

The new quantum computer challenge: create Pokemon fighting teams.
https://www.nextbigfuture.com/2019/08/applying-quantum-computing-to-optimize-pokemon-fighting-teams.html

The wildfires in the Amazon rainforest don’t actually threaten the world’s oxygen supply, and the Amazon isn’t the “lungs of the planet.” Every plant on Earth could vanish, the oxygen levels would not significantly decrease.
https://www.theatlantic.com/science/archive/2019/08/amazon-fire-earth-has-plenty-oxygen/596923/

All the obsolete and disused electronic devices stashed in peoples’ houses collectively contain a large amount of rare earth metals that could be recycled. (Makes me think of my theory that robot butlers will help people out by selling or recycling unused possessions and trash.)
https://www.bbc.com/news/science-environment-49409055

Here’s a thought-provoking article about how the Universe is not “fine-tuned” for organic life.
https://www.skeptic.com/reading_room/non-fine-tuned-universe/

The English language isn’t “declining,” both for the reasons listed in the article and because it will exist forever in the computer memory banks to AIs. Any variant of English that has ever existed and been recorded will be reproducible in the future. The same will be true for all other languages, of course.
https://www.theguardian.com/science/2019/aug/15/why-its-time-to-stop-worrying-about-the-decline-of-the-english-language

A Mexican mathematician just solved a 2,000-year-old optics problem. If we transition to a post-work society, I hope more people will devote themselves to creating useful knowledge like this instead of indulging in hedonism.
https://petapixel.com/2019/07/05/goodbye-aberration-physicist-solves-2000-year-old-optical-problem/

“Tidal lagoon power” plants are an interesting concept.
https://www.bbc.com/news/av/science-environment-31689511/how-does-a-tidal-lagoon-power-plant-work

“Physics of the Future” summary

I just finished Michio Kaku’s 2011 futurist book, Physics of the Future, and am posting my abbreviated notes of it, most of which describe his predictions for this century. It didn’t make the hairs on the back of my neck stand up the way The Third Wave did, but I still think most of the predictions will prove accurate. Kaku also provides a few eye-opening insights that shifted my way of thinking a bit, such as his elucidation of the “Caveman Principle,” his thesis that technology will enable “perfect capitalism,” and his point that technology will grant future humans abilities that were once the sole province of the Greek gods. Overall, I enjoyed the book and found it readable, reasonable, and well-researched.

That said, there were a few aspects of Physics of the Future that I disliked. Kaku’s predictions about cheap, room-temperature superconductors being invented by the end of this century are strikingly unsupported by any evidence he presents, and his discussion of the Kardashev Scale seems at odds with what Kardashev actually wrote (in analyzing this inconsistency, I found that Kardashev’s work on this matter is widely misunderstood, and the exercise made me doubt the value of the Scale in any case). Developments over just the last eight years suggest that the book’s predictions about the rise of therapeutic organ/tissue cloning and age slowdown/reversal therapies are too optimistic, and those about dwindling fossil fuels supplies and artificial intelligence advancement are too pessimistic.

One irritating thing about the Physics of the Future is Kaku’s habit of mixing in explicit predictions with attached deadlines with “non-predictions” that are merely re-statements of things other scientists said might be possible at an indeterminate point in the future. The latter is more common in the second half of the book, and the reader must pay careful attention to its language to tell what is what.

Physics of the Future abbreviated notes
By: Michio Kaku

Introduction

Most attempts to predict the future fail because the people making the predictions aren’t scientists or people with firsthand knowledge of science.

In this book, Kaku–who is a scientist–has formed predictions based on interviews with hundreds of scientists across many fields. 

This book is similar to his earlier futurist book, Visions.

Some brilliant people have made uncanny, correct future predictions:

  • Jules Verne
    • In Paris in the Twentieth Century, (1863) he correctly foresaw glass skyscrapers, air conditioning, TV, elevators, high-speed trains, gas-powered cars, fax machines, and something like the internet. 
    • In From the Earth to the Moon, (1865) he correctly foresaw a Moon mission and even deduced details like the size of the space capsule and its human crew, the launch location, transit time, weightlessness in space, and ocean splashdown at the end. 
    • Verne used his vast trove of personal notes about scientific discoveries and progress as the foundation for his predictions. 
  • Leonardo da Vinci
    • In the late 1400s, he drew diagrams of parachutes and aircraft that could have flown. Unfortunately, it would be another 400 years before a motor with a sufficient power-to-weight ratio was invented to propel such aircraft.
    • He also designed a mechanical calculator. It wasn’t built for about 500 years, but it worked. 
    • He also sketeched a warrior robot, based on a suit of armor, and it was also built and found to be functional. 
    • da Vinci was a genius in his own right, but he also collaborated with many other brilliant scientists. 

“The future is already here, it’s just unevenly distributed.” –William Gibson

Ordinary people and experts usually underestimate how much technology will change in the long run. 

At least until the year 2100, it’s wise to assume that our understanding of the laws of nature (gravity, electromagnetism, the weak and strong forces) will not significantly change. Concordantly, predictions for that timeframe should not violate those laws. 

By 2100, humans will have the same abilities as the ancient gods

  • Ability to use thoughts to control objects
  • Perfect human bodies with superhuman lifespans
  • Ability to use biotech to make novel organisms
  • Nanotech to seemingly transmute objects and to create objects “from thin air”
  • Flying cars will be like sky chariots

Unless humans destroy themselves, within 100 years (i.e. – by the year 2111), Earth will be a “planetary civilization” with Kardashev Level 1 status.  

Famous predictions that failed:

  • The paperless office
  • The death of cities due to telecommuting
  • The death of tourism, colleges, and malls thanks to people visiting surrogate virtual spaces. 
  • The rise of video phones [it has actually come true as of 2019]
  • The demise of traditional media (TV, radio, live theater, and movie theaters) thanks to the internet

Those and other predictions failed because they violated the “Caveman Principle.”

  • The Principle holds that humans evolved for hunter-gatherer life, and that this still shapes our behavior and thinking today. Ways of living that force us to go against our primitive, ingrained instincts will fail. 
  • Cavemen wanted to see “proof of the kill,” which today manifests itself in the human preference for tactile physical objects over digital facsimiles. 
  • Cavemen always socialized through face-to-face encounters, and that method of communication allows people to read important nonverbal cues, to size each other up, and to bond in ways that are impossible through remote interaction. There was a time when humans were incapable of speech and relied on other means to communicate. 

Chapter 1 – Future of the computer

[Boilerplate stuff about Moore’s Law, “exponential,” and improvements to computers.]

Once computer chips get small enough and cheap enough, it will make sense to embed them inside all kinds of manufactured objects, like walls and home appliances. They will have wireless capabilities and will be able to communicate with each other and with the internet through the uplink.  

Our surroundings will become “intelligent,” computers won’t be thought of as distinct devices, and we’ll start thinking of computing as a ubiquitous property, as we now think of electricity. 

Computer monitors will take the form of wallpaper, picture frames and billboards, and displaying movie footage won’t cost more than displaying static images. 

These devices will also have many types of sensors, allowing them to monitor their surroundings and, among other things, to issue alerts in the event of an observed problem. 

By 2020, a computer chip will only cost a penny. 

The word “computer” will disappear from the English language. [I doubt it.]

By 2100, humans will have the formerly “Godlike” ability to control physical objects with their thoughts or with remote bodily gestures thanks to computers embedded in our bodies and brains sending signals to computers embedded in the objects around us. [It will still be simpler and more efficient to manipulate many things the “old fashioned way” by physically interacting with them.]

By 2030

  • There will be augmented reality glasses with internet access. Users will interact with it using a handheld peripheral device, or by doing hand gestures that the glasses will see and recognize as inputs. [One of the reasons Google Glass failed was its very limited means of input.] 
  • Contact lenses that do most of the same things will also be invented. A contact lens with millions of pixels is theoretically possible. [A 1080p screen display measures 1920 x 1080 pixels, so it has a resolution of 2.1 million pixels (megapixels).]
  • The glasses will also have front-facing cameras and advanced pattern recognition capabilities, allowing them to display information about people and objects in your field of view. Users will also be able to stream live footage to the internet for others to watch. [As of 2019, even though AR glasses have not become popular, livestreaming via smartphones definitely is.]
  • Autonomous cars will exist. The military will get them first, and then big companies will buy autonomous big-rigs to ply simple highway routes, and finally, everyone else will get them, and they will be able to navigate suburban and urban traffic environments.
  • AIs will become adept at matching humans on the basis of compatible personality traits or shared interests. Technology will expand peoples’ social circles. 
  • Personal assistant AIs will be able to do complex tasks, like planning vacations for people. 
  • Monitors will become paper-thin and it will be cheap enough to cover entire walls of your house with them. They will OLED-based. Some people will have rooms where all four walls are covered in said screens to create an immersive experience. [The only problem is that you’d have to clear all furniture and solid objects from the room so as not to block your view and break the visual illusion. Most people don’t have a spare room just for this.]
  • The wall screens will also display customizable patters, allowing people to change what kind of “wallpaper” they have. [The durability of future OLED screens will be a major issue: If a pixel burns out, can it be fixed, or does the entire wall-sized screen need to be replaced? What if someone accidentally bangs their elbow against a wall screen, or spills a drink on it? Closely joining together many “tiles” to make a wall-sized screen will probably be the best option, as damage would only force you to replace one tile. OLED screens can also replace light fixtures, and it might make sense to cover ceilings with them.] 
  • Computerized glasses and contact lenses will also let people “meet” in augmented reality or virtual reality. Seemingly 3D moving images of other people will appear to be in your vicinity. 
  • Once OLED costs get low enough, it will be possible to buy disposable “sheets” of OLEDs, just like sheets of paper today. You could roll or fold them up when not in use. [But this would be a hindrance since the material would still have “memory” and would keep trying to return to some other configuration.] When done with a sheet, you would throw it away. [Unless the OLED paper were easily recyclable, environmentalists would throw a fit and try to ban it.]
  • Seemingly normal windows could, upon command, turn into transparent computer screens or display images. [There are two ways this could work: 1) The windows are essentially big versions of the AR contact lenses, meaning they are transparent, but also impregnated with millions of OLED pixels that, when activated, display images. In a dual-paned window, the inner pane would be made of OLED glass, and the outer pane would be made of Privacy Glass that could turn opaque to block exterior light and make the OLED’s images easier to see. And/Or 2) The “windows” will be fake, “virtual windows” that are actually just portions of the OLED wallpaper displaying footage from exterior building cameras. See the Seoul apartment interior in Cloud Atlas]
  • Cell phones might have OLED displays that can be pulled out as needed, like scrolls. [Foldable smartphones accomplish the same thing.]
  • Highly immersive virtual reality will exist. Special gloves will also deliver a haptic element to the experience by allowing your fingers to feel textures and your arms to feel resistance from objects in your virtual environment. 
  • There will be AI doctors that you can access from the privacy of your home and interact with conversationally. They will have realistic-looking human avatars, and will diagnose you correctly up to 95% of the time. 
  • The AI doctors will have your genetic profile and will use that information to aid their diagnoses of you. 
  • People will be able to afford small, handheld devices like the medical tricorders from “Star Trek.” The devices will contain mini-MRI machines, DNA chips and other sensors that will be able to peer inside your body and recognize the the genetic and biochemical signs of many diseases, including cancer. During remote medical exams, you AI doctor will tell you through your wall screen how to use the device on yourself. [I’m skeptical that MRI machines will get that small and cheap by 2030 and still do quality scans.]
  • https://www.quora.com/Are-handheld-MRI-machines-possible
  • Swallowable “smart pills” with tiny cameras could replace colonoscopies. 
  • Your clothing and bathroom fixtures will also contain sophisticated health monitoring devices. [The value of many types of constant health monitoring is questionable. For example, you gain no benefit from testing your DNA every day, or even once every several months. And as health testing gets more frequent, so do the odds of false positives and unnecessary trips to the doctor for further investigation.] If you suffered a major injury, or a catastrophic health incident like a heart attack, the sensors embedded in your clothing and surroundings would detect it and alert EMS. [The problem with “smart clothing” is that the chips and sensors would wear out due to laundering, and to be continuously monitored, you’d need to buy a wardrobe entirely comprised of smart clothes.]
  • Technology will make many aspects of live similar to fairy tale worlds. 

2030-2070

  • Moore’s Law will end, meaning computer cost-performance will not double every 18 months anymore. The doubling time will increase until it is several years long. [Depending on the source, Moore’s Law “died” somewhere between 2016 and 2018.]
  • Computer chips will be made of some material other than silicon. 
  • Augmented reality glasses and contact lenses will be in mass use. 
  • Examples of AR applications: 
    • Ability to see through solid objects by streaming external video camera footage to a person’s AR eyepiece. This would help drivers of buses and tanks, and aircraft pilots, by eliminating blind spots. It would also help people doing many types of repairs since they’d be able to see things like pipes and wires that are hidden by walls. Prospectors will be able to see underground deposits of minerals and water. 
    • Ability to make nonexistent objects appear overlaid on the real world. Architects will be able to see 3D models of structures they are designing. Interior decorators will be able to try out different furnishings and color schemes for rooms before actually buying anything. 
    • Tourism will benefit. Images of restored ancient buildings will be overlaid above their ruins. Virtual tour guides will lead tourists around art galleries and historical sites, providing helpful narration. 
    • Instant translations of text written in foreign languages, such as road signs. [Only useful when traveling]
    • Highlighting of plant species and of trails while hiking. [Only useful when hiking. Reminds me of the “intelligent belt” in The Godwhale that tells the one character to pick up edible substances.]
    • Apartment hunters could drive down the road and see which buildings are for rent along with their prices and amenities. 
    • Constellations in the sky would be labeled. [Few people care]
    • Actors, musicians and performers wouldn’t need to memorize their lines anymore since text would hover in their fields of view. 
    • Virtual lecture halls where you could even ask the instruction questions and get answers. 
    • Soldiers would have the “fog of war” lifted, as they’d be able to see maps and the locations of friendly and enemy forces. 
    • Surgeons would be able to see live MRI scans of patients during operations. 
    • Full-immersion video gaming.
    • [I’m convinced the technology will have niche applications, but skeptical that average people will adopt them for everyday use, unless we’re talking about the far future where the unemployed masses enter the Matrix 24/7. Moreover, I doubt AR eyewear will make smartphones obsolete for decades.] 
  • AR eyepieces will replace cell phones, MP3 players, computer monitors, and most other gadgets. [I’m not sure. The classic problems with AR glasses would still remain.]
  • AR eyepieces will let you do instant “showrooming” in any store. 
  • AR eyepieces sensitive to X-rays could let you see through solid objects. You would need to carry a “flashlight” that emitted X-rays though, which would be hazardous to your health. 
  • There will be portable language translators that work in real-time. 
  • AR eyepieces will display seemingly 3D images, and TVs will be capable of displaying holograms. 
  • TVs will display holographic images without viewers having to wear glasses. The principal hangup to holographic footage is that it contains much more data than 2D footage, so we’ll have to wait until TV bandwidth expands. [Could be a 10,000x data difference https://www.electronicworldtv.co.uk/blog/holographic-tvs-a-possibility-in-the-next-decade]
  • Holographic TV screens might be shaped like domes or cylinders, with viewers under them. 

2070-2100

  • Humans will be able to control physical objects with their minds. 
  • Brain impants and externally worn BCIs (brain-computer interfaces) could monitor a person’s brain activity and read their thoughts. The BCIs would make use of brain-scanning technologies, like EEGs and fMRIs. 
  • Eventually, fMRIs that can see individual brain cells will be invented. 
  • fMRIs will be able to reconstruct a person’s mental images based on their brain activity. This could allow us to use machines to record our dreams, but the footage would be grainy because we imagine things in low-resolution. [See my Prometheus review]
  • Fortunately, intrusive mind-reading at a distance is probably impossible. The subject would need to have brain implants or a head-worn BCI. 
  • Brain scanning machines could serve as reliable lie detectors. 
  • MRI machines the size of cell phones will exist. Some might even come in the form of suction-cup devices that are attached to the patient’s body. 
  • Cheap, room-temperature superconductors will exist, and will be embedded in everyday objects, which will also have small computers and sensors. Humans with brain implants or other BCIs would be able to telepathically control the objects and activate electrical currents in the superconductors, which could cause them to move around thanks to magnetic force. “Telekinesis” would therefore exist. 
  • [This sounds like a particularly shaky prediction since we’re not even sure if a room temperature superconductor can even exist. The theoretical aspect is still unclear. Moreover, there’s no cost-performance improvement trend akin to Moore’s Law that indicates we progressing towards inventing cheap room-temperature superconductors by 2100. Kaku’s prediction that humans will commonly use their thoughts to move objects like pieces of furniture across rooms also seems to, in spirit, clash with the Caveman Principle. Why not just move the chair in front of you by pushing it with your hand?]

Chapter 2 – Future of AI

While AI is genuinely improving, the odds of machines achieving human-level intelligence anytime soon have been overblown by the media, sci-fi movies, and a minority of scientists. Most scientists with relevant expertise don’t expect it to happen for decades, perhaps centuries. 

One of the world’s most advanced robots–ASIMO–can’t even sense and avoid tripping over objects placed in its path. A cockroach can easily do this, which means our best robots are still dumber than common insects in critical ways. 

The structure of the human brain is fundamentally different from the structure of a computer. Our brains are massively parallel, meaning they have trillions of processors working at the same time, but each processor operates very slowly. Computers are serial, meaning they typically have only one processor, but it operates very fast. 
Organizing computers to make “neural networks” the mimic the human brain has proven hard.

Humans also have common sense about the real world and are excellent at pattern recognition, whereas computers are very bad in both. [This book was published in 2011, and major advances were made in computer pattern recognition by the end of that decade.]

The “Cyc” project was started in 1984 to “codify, in machine-usable form, the millions of pieces of knowledge that compose human common sense.” As of 2017, it contained about 1,500,000 terms.

By 2030

  • “Expert systems” will greatly improve and become more common. 
  • There will be machine doctors that you will be able to access from your home and communicate with via natural speech. The doctors will diagnose you with similar accuracy as human doctors. 
  • There will be robot nurses in hospitals that can move around interior spaces unassisted and perform basic patient care tasks, like delivering medications and monitoring humans.

2030-2070

  • “Our world may be full of robots.”
  • Most robots will not be humanoid, and instead will resemble animals like snakes and insects, depending on the needs of their function. 
  • Many of the robots will be “modular,” meaning they could reconfigure themselves for different tasks by changing their body parts. [This kind of dovetails with my theory that the “Ideal Human” might be a giant human brain encased in something like a Mr. Potato Head torso with many ports that robotic limbs and sensors could be plugged into as needed.]
  • [Looking at vehicles and guns as examples, it seems optimal to make a small number of “chassis,” with each chassis being highly modular.]
  • The robots might be made of many, standardized pieces somewhat similar in concept to Lego blocks. Each block would have attachment points for other blocks, and its own sensors, computer and power source. The blocks could join together to make bigger robots of nearly any shape and to do many different types of work. 
  • Robots made of such modular components could be very small or very large and have any arbitrary number of limbs or body configurations. They could pass through a wall by finding a small holes in it, passing their component modules through the hole individually, and then reassembling all modules on the other side of the wall to recreate the robot. 
  • Small robots could do many jobs that humans can’t due to our large size or high labor costs. For example, small robots could crawl over all the rafters and beams of a bridge, checking for wear and spotting problems well before the bridge collapsed. [Like my idea of using insect-sized robots to crawl through the innards of a car or house to find things like the sources of oil and water leaks. Those diagnostics can be very messy, trial-and-error affairs if humans have to do the work.]
  • Noninvasive keyhole surgeries will become the norm in the future, as will “telesurgery.” 
  • Endoscopes used for keyhole surgeries and internal exams will get thinner, and micromachines “will do much of the mechanical work.” [Meaning unclear]
  • “By midcentury, the era of emotional robots may be in full flower.” [There’s no reason to think that intelligent machines won’t someday learn how to at least convincingly mimic human emotions and to take over human jobs requiring empathy and warmth.]
  • The author seems to suggest that emotions and intelligence and inextricable, meaning intelligent machines will necessarily also have emotions. 
  • Robotic pets that have about the same intelligence as cats and dogs and the ability to at least outwardly imitate emotional states will be common. They won’t be able to understand verbal commands that aren’t in their programming. [Progress with understanding human language seems to be progressing faster than he predicted. He’s right to point out that some robots will look exactly like animals, and that “dog-level intelligence” will be achieved before “human-level intelligence”.]
  • The human brain will be mapped. However, it will then take “many decades to sort through the mountains of data,” which seems to suggest that an AI derived from a reverse-engineered human brain won’t be made until after 2070. Consider that the C. elegans brain was fully mapped in 1986, but scientists still can’t make a computer simulation of its brain that functions the same.  
  • In 2009, neuroscientist Henry Markram predicted that a computer simulation of a human brain could be made in 10 years, provided the project to do so got enough funding. The author speculates the costs would be comparable to the Manhattan Project. 
  • Another way to map brains is to cut brains into very thin slices, to use electron microscopes to photograph the cross-sectioned neurons in each slice, and to assemble the resulting data into a 3D computer model of all the neurons in the brain. 
  • Gerry Rubin predicts that the fruit fly brain will be mapped in 20 years (2031), and that will get us 20% of the way towards understanding the human mind. 
  • A human brain has 1 million times as many neurons as a fruit fly brain.  

2070-2100

  • Human-level AI will probably be friendly to humans. 
  • AIs will have failsafes built into them that shut them down whenever dangerous, aberrant, or insubordinate behavior or thoughts are detected. Humans will also be able to say safewords that trigger the failsafes. 
  • Humans will build some robots whose purpose it is to disable or destroy malfunctioning robots. [I agree that there will never be a 100% human vs 100% robot war. Surely, the humans will have some number of non-sentient robots fighting for them that the other side can’t hack or persuade to switch sides.]
  • Human-level AI won’t appear suddenly. It will be preceded by decades of steadily increasing machine intelligence, like roach-level AI, mouse-level AI, and chimp-level AI. Thus, humans will have time to prepare and to develop increasingly sophisticated safeguards at each step that prevent the AIs from taking hostile action against us. [And even if hostile, human-level AI appeared without warning today, the amount of damage it could do would be limited since not everything is controlled by computers, and not all computer systems would be accessible to it. Not everything can be hacked.]
  • The author agrees with roboticist Rodney Brooks’ prediction that humans will cybernetically augment themselves with technology, and the advanced robots of 2100 will be inspired by the human brain and by biological systems. 
  • In theory, it is possible for humans to control robot limbs and even whole robot bodies with their thoughts. A cybernetic brain interface would be needed. 
  • Remote-controlled robots could enable the offshoring of blue-collar work, which would reduce the need for immigration and especially help Japan. 
  • They would also be useful for doing dangerous work, like rescue missions and outside excursions on extraterrestrial bodies (the human astronauts would stay inside protected habitats). 
  • Because what humans find aesthetically pleasing is rooted in our genes, people will reject body enhancements that make them look ugly or strange. [The small minority of people who are today into extreme body modifications would probably embrace all kinds of augmentations. They might even have their own bars and clubs, like something out of Deus Ex.]
  • The author predicts that humans will be open to technologically augmenting their bodies so long as they augmentations don’t make them uglier by conventional standards, and that people will sometimes use remote-controlled robots for work or pleasure, but the Cave Man principle will preclude them from permanently existing in that state. [Has implications for FIVR’s future role.]
  • Human-level AI won’t be created until close to the end of this century. 
  • Even if we have computers with the same raw computational power as the human brain, we might not have the software necessary to make them intelligent like humans. Hardware improvements are relatively smooth and predictable, whereas software advances happen in fits and starts. AI software advances will probably lag hardware advances. 
  • An AGI-based “singularity” or “intelligence explosion” isn’t a given, since we don’t know if a human-level AI would be able to make a smarter version of itself. [This is a weak argument. The history of human evolution contains several instances where one hominid species gave rise to a smarter hominid, and among humans alive today, it’s common for parents to give birth to children that are smarter than they are. And as we decode the human genome, we are discovering which genes code for human intelligence, which in theory could allow us to use genetic engineering to make smarter humans. So if humans are smart enough to make smarter versions of themselves, then a machine with human-level intelligence should also be able to make smarter machines. Also keep in mind that Einstein was human, so he technically had “human-level intelligence,” which means a merely “human-level” AI could be as smart as Einstein, but without dyslexia, with a perfect memory, and able to think 24/7. Most people would deem that “superhuman.”]
  • The high costs of doing brain scans and decoding how the human brain works will also delay AGI. 

Chapter 3 – Future of medicine

By 2030

  • The cost of gene sequencing will decrease enough for many average people to get their full genomes sequenced. From it, they will derive useful information about genetic health conditions they may have. 
  • As more human genomes are sequenced and more genetic information becomes available for computer cross-referencing, the locations of more genes coding for specific traits (including genetic diseases) will become known. 
  • A better understanding of the human genome will also assist detectives, since they will be able to generate accurate CGI facial reconstructions of unknown people by sequencing scraps of their DNA found at crime scenes. 
  • You will talk to AI doctors via the wall screen in your house. 
  • Your bathroom [presumably the mirror and toilet] will have sensors that can detect your disease symptoms, including cancer. 
  • Nanoparticles will be used to deliver anti-cancer drugs directly to cancer cells in your body. Chemotherapies in which a patient’s body is flooded with such drugs, and they attack many healthy cells, will be obsolete. 
  • It will be possible to grow new human organs, derived from a specific person’s DNA, and to implant the organs into that person without risk of rejection. [This looks headed for failure.]
  • A human urinary bladder was grown in a lab for the first time in 2007, and a windpipe in 2009. [Time showed that these results were not as impressive as claimed. Research “Dr. Paolo Macchiarini,” who was a pioneer in tissue engineered windpipe transplants when this book was written, only to be revealed to be a fraud within a few years.] 
  • “Within five years, the first liver and pancreas might be grown…”
  • Chemistry Nobel Prize winner Walter Gilbert predicts that, in a few decades, it will be possible to use a person’s DNA to create almost any organ for him in a lab.
  • A major roadblock to therapeutic cloning is infusing the synthetic organs with capillaries. These blood vessels are microscopic, and hence too small to be created using molds. 
  • A major roadblock to stem cell therapy is controlling the differentiation and mitosis of the stem cells. Very subtle and poorly understood chemical messages sent between cells determine how their neighbors develop. 
  • “Pixie dust” is a powder made of human extracelluar matrix. If applied to the stump of a severed finger, it allows the body to slowly regrow the fingertip. 
  • Human cloning will be possible, but almost never used. Interested people might be parents looking to replace a dead child, or rich old guys looking to make worthy heirs. 
  • The creation of the first human clone will probably trigger a wave of anti-cloning laws being enacted, and ethical outrage from many people. It will mirror the reaction to the first Test Tube Baby. In time, the novelty will wear off, people will see the clones act no different from anyone else, and laws and attitudes will relax. 
  • Cancerous tumors typically have tens of thousands of different mutations, so it take many years of study to determine which genes can make cells cancerous. 
  • There will not be a cancer cure by 2030, but we will have better, cheaper ways of detecting cancer earlier, when it is easier to treat. 
  • By 2050, it might be possible to slow down the aging process, extending human lifespan to 150. 

2030-2070

  • Gene therapy will probably be in common use as a cancer treatment. 
  • “Designer babies” will be born. Genetic engineering can influence many human traits, including intelligence, physical strength, and baseline happiness level. 
  • Richard Dawkins predicts that, by 2050, it will be possible to feed genomic data into a computer and to have it generate an accurate virtual rendering of the organism’s appearance. 

2070-2100

  • Richard Feynmann predicted that human aging would be cured someday, and medical immortality achieved. Dr. William Haseltine agreed.
  • The rising rate of breast cancer could be due to women having fewer children, since estrogen increases breast cancer risk, and the hormone’s levels decrease during pregnancy. 
  • Twin studies prove that human lifespan is partly genetic. The specific genes that code for lifespan will be identified as more human genomes become available for medical research. 
  • By 2100, technologies needed to grant medical immortality may exist. 
  • “In five or six or seven years, there will be drugs that prolong longevity.” -Christoph Westphal, 2009
  • “The nature of life is not mortality. It’s immortality. DNA is an immortal molecule. That molecule first appeared perhaps 3.5 billion years ago. That selfsame molecule, through duplication, is around today.” – Dr. William Haseltine
  • A battery of different therapies and personal practices will allow for human life extension:
    • Grow and surgically implant new organs and tissues to replace older ones as they wear out. 
    • Ingest a cocktail of enzymes meants to slow aging and mutations at the cellular level.
    • Use gene therapy to manipulate genes responsible for aging (slow it down)
    • Maintain a healthy lifestyle (good diet and exercise) 
    • Use nanosensors to detect diseases like cancer at their early phases and treat them.  
  • GM crops will allow Earth to support a much larger population.
  • Richard Dawkins believes portable, full-genome sequencing kits will exist someday, and that it will be possible to clone extinct species. 
  • Computers might also be able to analyze the genomes of humans, chimps and other primates to deduce the genetics of the “Missing Link.” Such a hominid could then be created in the flesh by assembling its DNA in a petri dish and implanting it in an ovum. 
  • The Neanderthal genome has been sequenced using fragmentary DNA recovered from the bones of several Neanderthals, and it might be possible to resurrect them. 
  • Extinct animals for which we have DNA samples, such as woolly mammoths and dodos, could be resurrected through cloning. 
  • Extinct animals for which we lack DNA samples, such as dinosaurs, can’t be resurrected, but we could make “proxy species” by analyzing the genomes of living species that descended from the dinosaurs. 
  • With very advanced genetic engineering, we could make hybrid animals and beasts like chimeras. 
  • Clones of long-dead humans could be made using DNA recovered from their entombed bodies. 
  • All communicable human diseases won’t be cured by 2100. 
  • It’s unlikely that people will want to genetically engineer their children to be freakish in any way. [Small numbers of mentally ill parents might.] There will be little financial incentive for geneticists to research or develop alleles for weird traits because demand for them will be low. 
  • The human race will not have split into different species thanks to genetic engineering or natural evolution. 
  • As genetic technology gets cheaper and more advanced, small groups and even individual people will gain the means to make biological weapons. Airborne AIDS would be a nightmare that could result from gene splicing. 
  • It might be possible to build machines capable of synthesizing microorganisms from scratch based on digital genetic data alone. 
  • Nations will continue to resist using bioweapons for fear of fratricide; it would be too easy for the infection to spread from the enemy back to whoever used it. 

Chapter 4 – Nanotechnology

Around 2020, Moore’s Law will end, and if a replacement for silicon computer chips isn’t found by then, “the world economy could be thrown into disarray.”

  • Richard Feynman famously believed that nanomachines could be built with the right level of technology, but he also thought it would be very difficult. 
  • We can already use scanning tunneling microscopes to move around individual atoms. It is possible and doesn’t violate any laws of physics.

By 2030

  • Nanoparticles could revolutionize cancer treatment. They contain cell-killing chemicals and are 10 – 100 nm in diameter, which makes them too big to diffuse into healthy cells, but small enough to pass through the abnormally large pores on many cancer cell membranes. The nanoparticles accumulate in cancer cells and release their loads, killing them but sparing the surrounding healthy tissue.
  • Nanoparticles with surface structures designed to be complementary to cancer cell antigens are another option. 
  • Nanoparticles made of metal (e.g. – titanium, gold) can accumulate inside cancer cells and then be externally heated with infrared lasers or vibrated with external magnets, to destroy the cancer cells. 
  • Cancer will be detected early and treated with nanoparticles. 
  • Medical micromachines and nanomachines could be used to move through a person’s blood vessels and precisely zap cancer cells and arterial plaques, deliver drugs to specific cells, or even do surgery. The machines would navigate using simple computers and/or magnetic and laser signals beamed from outside the person’s body. 
  • DNA microarrays/chips will be small and cheap, and will allow people to do at-home testing for many types of cancer. 
  • Microarrays/chips that test for proteins that are hallmarks of different diseases will also be available and will have the same personal health applications. 
  • [The author is wrong to predict that people would do the at-home tests every day. Such a high rate of testing would raise the odds of Type 1 errors and needless hospital visits to confirm misdiagnoses. I doubt there would be any benefit for healthy people to take tests for cancer or other major diseases more often than once every six months or even once a year.]
  • In 2007, Gordon Moore predicted that his eponymous Law would end in 10-15 years. [He was right.]
  • We will be forced to start making computer chips out of something other than etched silicon wafers if we want them to keep getting faster. 
    • Stacking silicon-based chips to make “3D chips” offers only a temporary solution since problems with heat dissipation limit how high the stacks can get before the chips melt. Components at the centers of the chip stacks wouldn’t get enough air flow to cool them down. 
    • Using X-rays instead of UV light rays to etch ever-smaller features on silicon chips could also wring out more of a performance boost from the material, though there are large technical challenges to using X-rays for this. 
    • Ultimately, silicon chips will hit a “bottom limit” once their feature sizes are 5nm small, at which point quantum tunneling of electrons will start happening. 
    • Arranging silicon chips into groups of parallel processors that work together could also prolong the silicon paradigm, but the difficulty of doing this is monumental since breaking up computation tasks, shunting the fragments to different processors, and then reassembling the processed data at the end is extremely hard. There is no general set of instructions for programming computers how to do this with any type of task; human programmers can only do this painstakingly and for specific tasks. 
  • Graphene-based computer chips could exist someday, and their transistors could be only 1 atom thick–the smallest possible size–but the technical challenges to manufacturing them are very high. [The author doesn’t explicitly say that these issues will be solved by 2030, so his mentioning of graphene computer chips isn’t a prediction for that year.]
  • Quantum computers could also be built someday, if major technical hurdles relating to “decoherence” can be overcome. 
  • Optical computers
  • Quantum dot computers
  • DNA computers

2030-2070

  • By 2050, many manmade objects will look the same as today, but will have special material properties and will be “smart” thanks to tiny computers and sensors embedded in them. 
  • “Programmable matter” will also be in common use. The basic unit of such matter will be tiny, modular robots called “catoms” that will be no bigger than grains of sand and will be able to reorient themselves with respect to each other, forming almost any shape. 
  • If your house were full of programmable matter, you could do things like transform a piece of furniture into something different, or convert your child’s old toy into whatever faddish, new toy he wanted.
  • A roadblock to this is the fact that catoms would cohere to each other weakly, so objects made of them would be fragile. [Also, individual catoms might be fragile, meaning an object made of them would slowly “waste away” as its components broke and fell off.]  

2070-2100

  • Molecular assemblers (e.g. – nanomachines that can build things from the bottom-up) don’t violate the laws of physics, and the existence of ribosomes and enzymes are proof of concept. However, it will be extremely hard for us to create molecular assemblers with the sorts of capabilities people like Eric Drexler envision. 
  • In theory, an MRI machine could be built that is powerful enough to see individual cells, so it could be possible in the future for people to get “body scans” that recorded the locations of all their cells as digital data. [This point is debatable: https://www.quora.com/Radiology-Will-MRI-technology-ever-reach-the-resolution-to-image-individual-neurons]
  • Put together, the aforementioned facts and the rate of improvement for the relevant technologies suggest that we might be able to build Star Trek-style replicators by the end of this century. [Even then, it will still be cheaper and more optimal to make most objects through “top-down” macro manufacturing methods we use today. Not every object must be super-strong or made to atomic levels of precision.]
  • The “Gray Goo” doomsday scenario is unlikely to happen, partly because nanotechnology is advancing so slowly that regulators will have time to enact the necessary safety measures. 
  • If replicators become widespread, and, along with other technologies and government policy, let all people have their material needs met, then society will probably split into a large group of loafers and a small group of innovators who work hard pursuing their passions. [This may have been what Federation society was like in “Star Trek.” Not even 1% of its citizens joined Starfleet.]

Chapter 5 – Future of energy [This is the weakest chapter so far]

In 1956, American petrochemical engineer M. King Hubbert famously predicted that U.S. oil production would peak around 1970 and then start declining. He proved right, which fanned fears of global “Peak Oil.” [Hubbert’s prediction about the peaking of U.S. CONVENTIONAL OIL production was the only big thing he got right. His predictions about U.S. natural gas production and global fossil fuel production proved far too pessimistic. Unconventional oil production in the U.S. also sharply ramped up in the 2010s, allowing total U.S. oil production to surpass the 1970 peak.]

The consensus among experts that the author spoke with is that global oil production had either already peaked or was at most 10 years away. [This book was published in 2011.] “The average price of oil will continue to rise over the long term.” [Oil prices have in fact dropped about 50% since 2011.]

By 2030

  • The likeliest successor to fossil fuels is a solar/hydrogen energy economy. [Solar is rapidly growing, but hydrogen is stalled.]
  • Wind power can’t supply all of the world’s energy needs for several important reasons. 
  • The amount of electricity made by solar panels has rapidly grown and will keep doing so. 
  • Electric cars are becoming practical. 
  • Laser technology for uranium enrichment could be perfected, lowering enrichment costs but also raising the risk of nuclear proliferation. [Since the book was published, the leading laser enrichment company, Silex, has been mostly stuck in neutral with the technology due to high costs and uncertain demand.] 
  • Advanced, suitcase-sized nuclear bombs could be developed. 

2030-2070

  • The climate will have significantly changed by 2050 thanks to global warming. “…by midcentury, the situation could be dire.”
  • [Listing of Worst Case Scenarios but no mention of their statistical unlikelihood.]
  • Several geoengineering projects have been proposed to counteract global warming, but none have gotten serious funding. If the problem gets bad enough, this might change by midcentury. 
  • By midcentury, the world will be in the “Hydrogen Age.” 
  • Hot fusion power plants could be everywhere, providing limitless amounts of electricity and no pollution. 
  • “Tabletop fusion” reactors might also be possible to build. 

2070-2100

  • Room temperature superconductors will probably have been discovered. [Why does he think so? Is there a trend like Moore’s Law?]
  • Up to 30% of electricity generated at a power plant is lost during transmission. Power lines made of room temperature superconductors would eliminate those losses. Wind turbines in the middle of America could provide electricity to New York. Nuclear power plants could be relocated to remote areas. 
  • Magnetic field lines can’t penetrate superconductors (the Meissner Effect), so cars with magnets on their bottoms could float over streets made of superconductors. The vehicles would still have to overcome air friction, so they’d need backward-facing engines of some kind. 
  • Maglev trains also float over their tracks, but the system doesn’t use superconductors, it uses simple magnets, oriented so their forces repel each other. Trains with superconductors could be much cheaper to build than today’s maglev trains. 
  • Superconductors would also allow us to shrink MRI machines to the sizes of shirt buttons. 
  • [The author doesn’t present any trend data to back his claim that room temperature superconductors will be invented by 2100, or that they will be cheap enough by then for these applications.] 
  • Space-based solar power beamed to Earth as microwaves could be real. However, space rocket launch costs will need to decline as much as 99% for solar satellites to become feasible. This probably won’t happen until the end of this century. 

Chapter 6 – Future of space travel

By 2030

  • Better telescopes (mainly space-based) will have revealed the locations of thousands of planets outside our solar system. Hundreds of those will be similar to Earth in size and composition. [Note that the author doesn’t say that we will know if these planets harbor life–he merely says we will be able to see that they are rocky and the same size as Earth.] 
  • A space probe will probably be sent to Jupiter’s moon, Europa. 
  • The Laser Interferometer Space Antenna (LISA) satellite system will be in space, and its ability to detect gravity waves could reveal what existed before the Big Bang. [Since the book’s publishing, LISA’s launch date has been pushed back until at least 2030]
  • Micrometeor impacts and radiation are so bad on the Moon that a permanent manned base would need to be built underground. [The author doesn’t actually say that there will be a manned base on the Moon by 2030.]

2030-2070

  • It’s unlikely that any off-world bases will be self-sustaining until late this century, or even until the 22nd century. [Agree] Like the ISS today, any bases we build on the Moon or Mars will be net resource drains on Earth until then, not assets. 
  • Space tourism could exist, though it will be very expensive.  
  • Breakthroughs may have dramatically reduced space launch costs. One candidate technology is laser propulsion, in which a powerful, ground-based laser shoots beams at the underside of a craft that is dripping water. The beams vaporize the water, causing a series of small explosions that propel the craft upward into space. 
  • Another candidate is the “gas gun,” which is a vertical howitzer that uses pressurized gas instead of gunpowder to accelerate objects to escape velocity. Due to the intensity of the G-forces, it could only be used to launch robust, unmanned craft. 
  • Another candidate is the “slingatron.” [Sounds impractical] 
  • All of those space technologies are longshots that will need decades of R&D to determine their feasibility. The odds of any succeeding can’t be calculated now, but it’s possible that any one of them could prove practical and sharply reduce the costs of launching things into space. 

2070-2100

  • A space elevator might be built. However, there are major technical roadblocks to overcome:
    • Only carbon nanotubule fibers have the necessary strength-to-weight ratios to make the space elevator. Several paradigm shifts in manufacturing techniques need to happen before we can make tens of thousands of miles of carbon nanotubules that are flawless down to the atomic level. 
    • The risk of collision between the space elevator and satellites would be very high, and the elevator would need to be able to move around to dodge them, meaning it would probably need to be tethered to a ship floating in the ocean, and the elevator’s upper segments would need thrusters.  
  • A Mars outpost will probably exist.
  • An outpost in the Asteroid Belt will probably exist. 
  • Only token numbers of humans will live outside of the Earth. Mass colonization of space will not be underway.
  • Probes will probably have explored some of Jupiter’s moons.
  • A serious effort will be underway to send our first probe to another solar system. 
  • Antimatter engines are not prohibited by the laws of physics. The real limitation is the high cost of synthesizing antimatter. Making just a few trillionths of a gram costs $20 million. 
  • An asteroid made of antimatter would be a game-changer. [But what about the effects of frequent collisions with interstellar dust particles made of normal matter?]
  • Antimatter won’t be cheap enough for propulsion applications until the end of this century. 
  • Nano-sized Von Neumann Probes could be used to explore and colonize the galaxy. Small size would make it easy to accelerate them to relativistic speeds using gravitational slingshotting around Jupiter or something like a particle accelerator. When they reached their destinations, they could start making copies of themselves. 

Chapter 7 – Future of wealth

By 2030

  • Computers will get so small and cheap that they will be integrated into everyday objects. They will be so omnipresent that the word “computer” might fall out of use since people won’t think of data computation services as coming from discrete physical devices. [I don’t see how this is a prediction about “future wealth.”]

2030-2070

  • Machines will take over jobs that involve repetitive physical or mental labor. 
  • Human workers will need to provide things machines can’t in order to keep their jobs. Workers with strong “people skills,” creativity, leadership, and other idiosyncratic human traits won’t lose their jobs. 
  • The best lawyers will still be humans. 
  • Juries will not be automated, since the law requires that juries be composed of the “peers” of the defendant being tried for a crime. 
  • [Problematically, many jobs that bank heavily on these human traits, like artists, comedians, and jurors, are low-paid. And because of simple supply and demand, the pay will drop further as more people enter those fields. Also, the necessary traits are unevenly distributed in the population, meaning not every person can switch to being a comedian, warm-hearted therapist, or painter once their old jobs are automated.]
  • Changes in the music retail paradigm caused by the rise of the internet mean that the music market will be democratized in the future, with middleman “gatekeeper” record companies and music moguls withering away, and average listeners deciding which artists succeed or fail. Poor, unknown singers and bands will be able to rise to the top more easily by selling their songs over the internet cheaply. 
  • Newspapers will continue declining, but won’t disappear because eventually, people will see the downsides of the atomized editorial news/conspiracy theorist podcaster paradigm, and they will crave reputable, unbiased news sources. 
  • Lifelike, computer-generated actors won’t exist because the nuances of the human face and its expressions are too hard to model. [This prediction will almost certainly be wrong.]

2070-2100

  • A state of “perfect capitalism” will arise, in which firms have perfect information about the needs and preferences of customers, and customers have perfect information about the prices and quality of goods and services offered by firms. People will see fewer ads that don’t appeal to them, and prices and profit margins for everything will be lower.
  • Augmented reality eyewear will let consumers see information about products before buying them, and to quickly do price/quality comparisons to find the best deals. [AI will do the number crunching.]
  • Firms will also be able to buy highly detailed customer data and to adjust their marketing strategies and prices accordingly. 
  • It won’t cost more money to have clothes and other types of objects custom-made instead of buying standardized shapes and sizes. “In the future, everything will fit.” 
  • Computation will be thought of as a commoditized utility service like electricity or piped water. People will no longer get their computation services from expensive boxes full of electronics that they buy for personal use and keep in their houses or pockets. Computation service will be remotely accessed through the cloud, using tiny, cheap devices embedded in the environment. [Or implanted in peoples’ bodies.] Any wall will be able to turn into a computer display screen in an instant. 
  • The Internet will not evolve into a means of mass surveillance. “Today, Big Brother is not possible.” [Events since 2011 show that the jury is still out on the internet’s long-term direction.]
  • Commodity goods and natural resources are getting cheaper over time and will continue to do so. As such, “commodity capitalism,” which is the trading of simple goods, will fade in importance, and “intellectual capitalism” will rise to the fore.
  • “Intellectual capitalism” refers to the production and trading of goods and services that have value because of uniquely human cognitive effort. New computer algorithms, films, video games, and inventions are all products that can only be created by careful human thought. [I think the author is overestimating how long humans will have a monopoly over these kinds of products. Most Hollywood films are so formulaic that AIs could soon write their scripts, and 100% CGI actors could star in them.]
  • The future is up for grabs, meaning developing nations could rise to the forefront of power by copying the West’s technology and the best aspects of culture and governance, and today’s rich, established countries could be second-tier. But the author makes no firm predictions beyond that general observation. 
  • Singapore is the best example of a country that rapidly developed thanks to a highly competent and technocratic government that identified and copied the best attributes of the West. 

Chapter 8 – Future of humanity

We are headed to become a planetary civilization. 

On the Kardashev Scale, we are now a Type 0 civilization. 

We will be a Type 1 civilization in 100 years, based on extrapolations of economic growth trends. [This is wrong. In Kardashev’s 1964 science paper, he set the Earth’s then-current level of energy expenditure (4×10^19 ergs/second) as the threshold for a Type 1 civilization. In other words, humanity has been a Type 1 civilization since 1964 at the latest. The paper also said nothing of there being a “Type 0” civilization.]

If the long-term global economic growth rate is 1%, then we will achieve Type 2 status in 2,500 years. With a 2% growth rate, it will happen in 1,200 years. [It depends on how fast we can build a Dyson Swarm. Even their component satellites are self-replicating, it will take many years to mine the raw materials to make enough of them to surround the Sun, and then to move them into the right positions in orbit. Several hundred years is a good estimate.] 

Evidence of our transition to a Type 1 civilization:

  • The rise and ubiquity of the Internet. This provides a universally accessible platform for low-cost communication and access to information. 
  • The rise of English as the world’s common language. [Computer translation technology will accomplish the same thing.]
  • The economy is increasingly globalized, and super-national trade blocs like NAFTA and the EU have formed. [Events since 2011 has stalled the expansion of international free trade and of trade blocs.]
  • The rise of a global middle class, whose values and outlooks are broadly similar and peaceful, regardless of which nation they live in. When people have a stake in society (e.g. – good job, money, property, a family), they become risk-averse and much less likely to support revolutions or big wars since they have so much to lose. 
  • Culture is increasingly globalized and homogenized, with people across the world consuming the same films and music and wearing the same styles of clothes. Local cultures will still survive though, and people will be “bi-cultural.” 
  • International sports events like the Olympics command more attention than ever. 
  • Environmental problems and disease outbreaks are increasingly viewed as global problems that countries by default work together to address. 
  • Low-cost plane travel and the swelling global middle class have allowed for a massive increase in international travel for tourism, work, and study. This gives more people exposure to foreigners, building bonds of affection and making it harder for them to go to war. 
  • Lower birthrates mean that parents value their children more as scarce resources, and don’t want to risk them dying in wars. [The rise of killer robots will fix that. A country’s military strength will decouple from its human population size.]
  • Nation-states will still exist in 2100, but they will be weaker than today. 

Our transition to a Type 2 civilization

  • Won’t happen for thousands of years. Since we will have existed as a planetary civilization for so long by that point, we’ll probably have ironed out the differences that put us at odds today, and we will be much more peaceful by the time we achieve Type 2 status. 
  • Once this status is attained, our civilization will become immortal since there is no known natural force that can destroy an advanced, multiplanetary civilization. [Agreed, though we might still be able to destroy ourselves through warfare or some kind of manmade accident, or be destroyed by aliens.]
  • We will have colonized all the celestial bodies in our Solar System and possibly built a Dyson Sphere. 
  • We will have colonized nearby star systems. 

What our civilization will look like when it has Type 3 status

  • We will have explored most of the galaxy, probably through use of unmanned, self-replicating probes.
  • We might be able to derive energy from the fabric of space-time itself. (“Planck energy”) This could also allow for the creation of wormholes that would effectively enable superluminal space travel.
  • Type 3 civilizations might already have a presence in our Solar System or even on Earth itself. They could be here in the form of very small probes that we overlook or lack the technology to detect. The Fermi Paradox is resolved if you assume aliens have this kind of technology. 

We will probably detect advanced alien life this century thanks to better telescopes. 

The discovery of intelligent alien life will be one of the most important events in human history. However, it won’t change things as quickly as many people expect. For example, if we learn about the existence of aliens by intercepting one of their radio transmissions, and it turns out the transmission was not meant for Earth, it will indicate that they don’t know we exist. There will be no imperative to send a signal back, meaning we could take our time deciding on our next step. It will also probably take decades for our response to reach them. 

Alternatives to the Kardashev scale

  • Carl Sagan’s scale is based on how many bits of information a civilization processes, and its increments are based on orders of magnitude (e.g. – A “Type C” civilization processes ten times as much information as a “Type B” civilization, and so on down the alphabet).
  • Freeman Dyson believed that advanced aliens would build spherical structures around their stars to capture all of the light and turn it into energy. Some waste heat would be emitted, so he suggested that “stars” that only emitted infrared light were probable locations of alien civilizations. 

As a civilization gets bigger and more advanced, it will generate more waste, including waste heat. If left unchecked, this would lead to their home planets and even their solar systems becoming uninhabitable. Thus, we can expect advanced civilizations to be much more efficient at resource usage than we are today. 

“Today, the Internet, with all its faults and excesses, is emerging as a guardian of democratic freedoms.” [In 2019, it is increasingly viewed as a means to spread government surveillance, extremism, and disinformation. Funny how things change.]

Democracies only work well if voters are well-informed and rational.  [But isn’t that true of any type of government? For example, dictatorships only work well if the dictators are well-informed and rational.]

Chapter 9 – A day in the life in 2100

You have hundreds of hidden sensors in your bathroom mirror, toilet and sink that scan you for illness. 

You have an AI personal assistant named “Molly” that can handle conversational speech, answer your questions intelligently, and complete tasks for you. You interact with Molly through your wall screen. 

You “wrap some wires around your head,” allowing you to use your thoughts to control the technology in your house. 

A robot chef is in your kitchen. 

You have augmented reality contact lenses that show you internet content. You watch the news:

  • There is a Mars colony. 
  • Preparations are underway to send nano-sized probes to other star systems. 
  • Extinct species are being resurrected using cloning technology. 
  • A space elevator is operational. 
  • Fusion power plants have existed since 2050.
  • Manhattan is surrounded by dikes due to higher sea levels, and one is leaking. 

You telepathically summon your self-driving car and tell it to drive you to work. [Clever and likely to hold true.]

The car hovers above the ground thanks to roads made of room-temperature superconductors. 

You work at a civil engineering company. In the lobby of your workplace, a small laser scans your irises from a distance to verify your identity. You don’t need an ID badge. 

Your augmented reality contact lenses and telepresence technology makes the conference room seem full of people, most of whom are actually somewhere else. You have a group meeting and discuss the dike leak. 

Several coastal cities across the world have been abandoned due to rising sea levels. Manhattan survived thanks to its dikes.  

The group realizes that an underwater maintenance robot probably went haywire and drilled the hole in the dike. A decision is made to fix it with a different underwater robot that is remote-controlled by a human.

After work, you return home and use your wall screen to do a video call with your robot doctor. It tells you that the sensors in your bathroom diagnosed you with pancreatic cancer this morning. The doctor prescribes you nanoparticles to kill the cancer cells. 

You run a smartphone-sized MRI machine over your abdomen to make a 3D scan of your internal organs, and the doctor sees it immediately. 

You have a holographic TV system in your living room that lets you watch sports games immersively. It looks like the players are running around you. 

Human genetic engineering is common.  

Molly helps you set up a date with a woman named “Karen.” Both of you have online dating profiles. 

You can use your wall screen to virtually explore places in the real world. You use this ability to “go shopping” at a local mall and to see if a robot dog is for sale there. You find it, and decide to drive to the actual mall to buy it because you are bored and want to get out of your house. 

Large numbers of robots of different shapes and sizes are roaming public spaces, mostly doing labor. 

The robot industry is bigger than the car industry. 

Robots still lack human levels of intelligence, creativity and humor. 

You try on suit jackets at a shop until you find the one that looks the best. You send an online order to a local textile factory to make that suit for you, but tailored to your exact body measurements. It will be delivered to you by the end of the day. 

At the supermarket, your AR contact lenses display price comparison data over all the items on the shelves and highlight the bargains. 

You return home. Most of your furniture is made of programmable matter, so you can change its appearance at will. You pick a new home decor motif and verbally order Molly to change everything. It takes about an hour for the process to complete.  

Medicines that can slow the aging process have existed for many years, and it’s common for adults to be much older than they look. 

You were born in 2028 and were genetically engineered in vitro to have a longer lifespan. That feature, coupled with medical interventions you had later in life, has resulted in you having a body of someone who is 30 even though you are 72 years old. 

FIVR gaming and tourism exists. 

You visit Europe with Karen, and while touring the ancient ruins of Rome, your AR contact lenses generate real-looking images that show what the area looked like in its prime. 

The Italian speech of the people you encounter is subtitled in English across your field of view by your contact lenses. 

You don’t need a paper map to find your way around Rome because your contact lenses display lines and arrows that tell you where to go. 

Ageless people don’t feel pressure to get married or have children. You’ve never passed either milestone. 

You and Karen agree to have a child, and contemplate genetically engineering it. 

Roundup of interesting articles, July 2019

Here’s an awesome, long-lost Joe Rogan interview with sci-fi writer Daniel H. Wilson. Unlike many other guests on the show, Wilson isn’t a kook, and I see he shares my view that robot butlers will be made smaller, weaker, and slower than humans to prevent accidental injuries to us.
https://www.youtube.com/watch?v=j5fH-o-258Y

Elon Musk’s OpenAI company and Microsoft are partnering to build an AGI. It’s funny how this news got no reaction.
https://openai.com/blog/microsoft/

Ten years ago, brain scientist Henry Markram said: “It is not impossible to build a human brain and we can do it in 10 years.”
http://news.bbc.co.uk/2/hi/8164060.stm

A machine-learning program that has a limited natural language understanding ability can scan through chemistry papers and predict unknown properties of molecules. This has the potential to speed up discoveries in the field by directing human research chemists to focus on the most promising things.
https://blogs.sciencemag.org/pipeline/archives/2019/07/15/machine-mining-the-literature

Once again, an AI has defeated some of the world’s best human players at poker. This time, in six-player games instead of just one-on-one games.
https://science.sciencemag.org/content/early/2019/07/10/science.aay2400
https://www.lesswrong.com/posts/6qtq6KDvj86DXqfp6/let-s-read-superhuman-ai-for-multiplayer-poker

Google’s DeepMind AI is now anonymously playing against human Starcraft 2 opponents.
https://www.bbc.com/news/technology-48950103

AIs will learn your taste preferences so well that they’ll be able to create individualized meal recipes for you. With so much focus on how robots will end the era of mass-produced clothing and let anyone afford tailored outfits, we’ve overlooked the fact that the customization will spread to all kinds of other goods and services.
https://www.france24.com/en/20190721-kitchen-disruption-better-food-through-artificial-intelligence

Deep fake technology is now being used to replace characters in movies. Some recently subbed Sylvester Stallone into Terminator 2‘s lead role, and the footage looks great. I predict someday it will be common for TV shows and movies to have multiple “variations” appealing to different segments of their audiences, with the plots diverging at key points and the characters played by different actors. This will get easier to do once lifelike CGI actors exist and once AIs can at least help to write scripts. The endpoint will be entertainment content (including VR worlds) custom-tailored to individual people.
https://www.digitaltrends.com/cool-tech/ctrl-shift-face-deepfake-changing-hollywood-history/

Facebook used AI to scan high-res satellite photos of Thailand and to add more than 300,000 miles of roads to official maps of the country. Instead of satellites, why don’t we use fleets of small, autonomous drone planes with belly cameras?
https://www.bbc.com/news/technology-49091093

“This conjecture has stood as one of the most frustrating and embarrassing open problems in all of combinatorics and theoretical computer science,” wrote Scott Aaronson of the University of Texas, Austin, in a blog post. “The list of people who tried to solve it and failed is like a who’s who of discrete math and theoretical computer science.”
https://www.quantamagazine.org/mathematician-solves-computer-science-conjecture-in-two-pages-20190725/

The “smart home” or “wired home” concept is older than most people realize. Microsoft unsuccessfully tried to launch it in 2003.
https://en.wikipedia.org/wiki/Smart_Personal_Objects_Technology

In spite of the end of Moore’s Law, some in the semiconductor industry still believe that integrated circuit features could shrink to 1.5 nm by 2030.
https://semiengineering.com/transistor-options-beyond-3nm/

All is not well between America’s strategic opponents.
https://nationalinterest.org/blog/buzz/venezuela-borrowed-10-billion-russia-pay-jet-fighters-and-tanks-it-cant-pay-it-back-69467

About 1/3 of Americans would support using nuclear weapons for a disarming first strike against North Korea, even if it meant killing over 1 million Koreans.
https://www.tandfonline.com/doi/full/10.1080/00963402.2019.1629576#

In the 1960s and 70s, an experiment was conducted at Brookhaven Lab to study the effects of radiation on the natural environment.
‘It was like walking up a mountain. The higher up you climb, the smaller and fewer the trees. Eventually, the trees drop out completely and you reach a zone of low shrubs, then a tundra zone of smaller ground plants and, finally, if the mountain is high enough, no life at all.’
https://www.latimes.com/archives/la-xpm-2001-jun-10-op-8635-story.html

In 1951, Argentina’s kooky dictator Juan Peron announced that his scientists had invented a fusion reactor.
https://en.wikipedia.org/wiki/Huemul_Project

100 years ago almost exactly, sailors aboard the captured German Fleet interned in British waters simultaneously sunk their own ships. Out of 74 ships, 52 sank that day. However, since it happened in shallow waters, all but seven of them were eventually re-floated and re-used for scrap metal. 
https://www.iwm.org.uk/history/the-scuttling-of-the-german-fleet-1919

“Operation Pedestal” sounds like one of the craziest missions of WWII.
https://en.wikipedia.org/wiki/Operation_Pedestal

Russia’s aircraft carrier is a net resource drain that they’d be better off decommissioning, but national pride prevents that.
https://www.usni.org/magazines/proceedings/2019/july/russias-only-aircraft-carrier-2nd-lease-life-or-slow-death

The U.S. kicked Turkey out of the F-35 fighter club because the latter bought an advanced Russian anti-aircraft missile system. I can remember the ancient days when Turkey was doing everything it could to schmooze the E.U. into giving it membership.
https://theaviationgeekclub.com/turkey-kicked-out-of-f-35-program-because-its-purchasing-s-400-but-greece-and-other-nato-countries-already-have-russian-surface-to-air-missile-systems-that-are-part-of-alliances-shared-mis/

“Quantum sensors” could make stealth aircraft obsolete, and could make it easier to detect submarines.
https://www.australiandefence.com.au/defence/cyber-space/quantum-sensors-to-make-australia-safer
https://www.bbc.com/news/business-47294704

3D printed gunpowder grains would burn faster and more thoroughly than standard grains, making bullets more powerful without making them longer or heavier.
https://techlinkcenter.org/technologies/optimized-solid-propellant-manufacturing-through-3d-printing/
https://www.janes.com/article/89808/eda-research-group-to-explore-new-3d-printed-weapons-propellants

DARPA’s self-steering .50 cal bullets are better than ever. I’ve predicted before that “smart bullets” and “smart guns” will become common this century.
https://www.fanaticalfuturist.com/2019/07/watch-darpas-smart-exacto-bullets-change-path-mid-flight/

The plastic parts of guns can be made transparent, like glass. Wouldn’t this be the best way to camouflage them since other people looking at you would see through (most of) your gun as if it weren’t there, and instead see whatever was on the other side of it (e.g. – your camouflaged uniform, a tree trunk, a bush).
https://www.thefirearmblog.com/blog/2019/02/13/the-transparent-heckler-koch-g36/

https://www.seas.harvard.edu/news/2012/08/flat-lens-offers-perfect-image

Arthur C. Clarke’s book July 20th 2019 predicted that we’d have manned Moon colonies by now, but that computing devices would be considerably more primitive than they actually are.
https://www.sffworld.com/2019/07/arthur-c-clarkes-july-20th-2019/

China has officially rejoined the “Zero Space Stations in Orbit” club.
https://www.universetoday.com/142948/chinas-tiangong-2-was-destroyed-last-week-burning-up-in-the-atmosphere-over-the-south-pacific-ocean/

Even if we used genetic engineering to purge all disorders from the human genome, we would have to genetically screen each new generation of humans for new disorders caused by random genetic mutations.
https://ghr.nlm.nih.gov/condition/apert-syndrome

The first baby has been born in the U.S. from a dead donor’s transplanted womb. I’m obviously a fan of assisted reproduction technologies, but I don’t see a justification for this.
https://apnews.com/c328217fa0ba43afa258067701ba3aee

Simple lab techniques could be used to separate healthy from unhealthy human sperm before use in IVF. They could also allow for sex selection of the offspring.
https://en.wikipedia.org/w/index.php?title=Sperm_sorting&oldid=883645243
https://pharmaceuticalintelligence.com/2013/03/11/sexed-semen-and-embryo-selection-in-human-reproduction-and-fertility-treatment/

40-60% of all fertilized human eggs don’t survive long enough to be born. Most are miscarried while still microscopic in size, and the woman has no clue she ever had a zygote inside her.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443340/

And for the first 99.9% of the human race’s existence, the child mortality rate was about 60%, meaning that, if you were lucky enough to survive the womb and to be born, there were better-than-even odds that you would die before age 16.
https://amechanicalart.blogspot.com/2013/09/infant-mortality-then-and-now.html

One of Elon Musk’s new projects is to create brain implants that will connect human minds with computers.
https://www.youtube.com/watch?time_continue=2546&v=TJI9UFUUCcg

Human voices sound terrifying to some animals.
https://www.theatlantic.com/science/archive/2019/07/humans-predators-mountain-lions-landscape-of-fear/594187/

Prince Charles continues his losing streak of Global Warming Doomsday predictions.
https://www.climatedepot.com/2019/07/16/prince-charles-at-it-again-issues-yet-another-climate-tipping-point-deadline-after-previous-100-month-deadline-expires/

‘Within one generation’s lifetime we will probably reach element 124,’ speculates Rykaczewski. Eric Scerri, a chemistry historian at the University of California, Los Angeles, US, agrees: ‘Fifteen years ago it was inconceivable that anyone would ever get as far as we got.’
https://www.chemistryworld.com/news/beyond-element-118-the-next-row-of-the-periodic-table/9400.article

Instantaneous communication and constant access to Breaking News is doing more harm than good. “Slow news” is better because the people releasing it have time to confirm that it is real and to carefully word it. Also, people should ask themselves how they’d be worse off if there were, say, a 12-hour time delay in having access to news reports on things that didn’t immediately impact their lives.
https://www.theatlantic.com/magazine/archive/2019/08/twitter-pause-button/592762/

The Soviet Concorde jet plane crashed in front of thousands of people at an airshow in 1973, just four years after it was built.
https://www.cnn.com/style/article/tupolev-tu-144-concordski/index.html

The U.S. Secret Service has a forensic lab with samples of 85,000 different types of inks, which they use to figure out where threatening letters and counterfeit money came from.
https://apnews.com/b541d7175ef64358a1e63a5cc3e5aeba

It’s been 20 years since Segways were invented, so the patent has expired and anyone can make and sell them. The Segway’s concept (small, motorized personal transport) was right, but the form factor was wrong, and the company’s sales strategy was bad. Rentable e-scooters succeeded instead, and do all the things Segways did.
https://www.kimt.com/content/national/499023511.html

Using data from user-submitted photos, scientists were able to make a 3D model of a 3,000 year old statue that ISIS destroyed a few years ago, and to make a copy of it using a 3D printer. As time passes, it will get easier and easier to make scans of objects and places, and to recreate them in the physical world or in virtual reality. The past will never die.
https://apnews.com/dbca5e23519f44c4a881c9cd69f41cd6

Would the world be better off with fewer humans and more machines? Are we wrong to worry about population decline and job automation?
https://www.project-syndicate.org/commentary/automation-favors-shrinking-populations-by-adair-turner-2019-07

“The Accidental Superpower” and my volcanic epiphany

I recently read The Accidental Superpower, and thought I’d write a brief review, as many of the book’s points align with the purpose of this blog. The first five chapters are great, and should be standard reading for anyone wanting a basic grasp of how accidents of natural geography help determine where nations form and what their fates are. Thanks to physics and to the demands of human biology, parts of the world with the following qualities are the best at supporting human populations:

  1. Mild climates. Humans struggle to live in places that are too hot or too cold. This is why there was never a powerful civilization centered in the Arctic regions or Sahara desert. Only small numbers of hyper-specialized nomadic people were able to live in those harsh places, their constant struggle for survival meant they never had the spare time and resources to get advanced, and they were conquered by other groups of people who originated in neighboring temperate climate zones that could support larger populations and bigger resource surpluses.
  2. Natural harbors and navigable waterways. Moving cargo by boat requires much less energy than it does to move it by pack animal, railroad, or truck. This means that parts of the world blessed with coastlines that have natural harbors–where ships could be protected from rough seas–could participate in trade and get richer than those that lacked them. Rivers are also very important because they provide drinking water, are convenient ways to get rid of waste, and can also be very cheap avenues of transportation, again bolstering trade. Importantly, not all rivers are created equal, and if they are too turbulent, shallow, or full of rapids, they aren’t useful for transit.
  3. Flat land. Flat land is, for obvious reasons, more useful as farmland, and it is faster, easier, and cheaper for people and cargo to move across it. Flat land can be colonized quickly, and it can support a larger, richer population because of the higher agricultural potential and lower energy costs of moving people and cargo around (the less money you spend on moving things around, the more money you have left over for buying things you want). As mentioned, the most energy-efficient way to move cargo is by boat, but railroad trains are a respectable second-place, while moving things by automobile is a distant third. However, the energy-efficiency of railroad transportation sharply drops if a train has to go uphill even at a 1% grade, or if its track has a lot of curves in it. Thus, flat land is much more conducive to railroad networks.
  4. Energy resources. Mostly, this means underground fossil fuel reserves.

There are three more key points worth mentioning:

  1. Mountains (or “highlands” as the author calls them) are usually low-population zones because they can’t support much human life. They also block the flow of people, which can be a good thing (forms a natural barrier between your people and a neighboring group of foreign people) or a bad thing (impedes the movement of your people within your own country and naturally encourages them to develop cultural differences that might undermine shared national identity).
  2. In general, the bigger a country’s population is, the stronger and richer it is. This is because most humans are productive assets that can build and invent things and aggregate into armies. However, important exceptions include humans that are very young, very old, or disabled. Those types of humans can’t do work, and are net drains on national resources. If they get to be too big a percentage of a country’s population, then the country will have all kinds of problems. The U.S. is one of the few major countries that has and will continue to have a favorable balance of productive humans vs. unproductive humans.
  3. All of the advantages and disadvantages conferred by geography can be partly ameliorated with technology. Useless cerrados can be turned into farmland, artificial harbors can be built and turbid rivers dammed or dredged, railroad and road networks can be built in areas lacking navigable waterways, energy can be imported or derived from an increasingly diverse array of sources (e.g. – a small country lacking fossil fuels might be ideally situated for dams, nuclear power, solar power, or wind power), and tunnels can be bored through mountain ranges.

I’m much less of a fan of the second part of the book, where the author makes predictions about how different countries will fare up to 2040. He posits many indisputable facts that are well-known to any student of international affairs, geopolitics, and economics, but then leaps from those to many unfounded and provocative conclusions about what’s ahead. Here are those I strongly disagree with:

U.S./Canadian fossil fuels production will stay at high levels. The extent to which fracking has bolstered North American energy supplies, and by extension, changed the world’s energy market (oil and natural gas prices are low across the board now) is clear and remarkable. However, I don’t think it’s safe for the author to assume that U.S./Canadian production levels will stay at current levels until 2040. We don’t know how much recoverable shale oil and gas there is in North America, and production could level off as early as the mid-2020s, and then start declining a few years later.

Citi Bank has a good track record predicting fossil fuel markets, and they seem to forecast a plateau in U.S. shale oil production in the mid-2020s.

This scenario isn’t a certainty, and the author could be right, but it’s important to point out that a nearer-term peak is just as plausible as what he thinks. This is not just an academic issue; long-term North American energy independence and the ripple effect of low global fossil fuel prices underpin the author’s assumptions that the U.S. will have the economic luxury of disengaging from the world, particularly the Middle East.

The U.S. will disengage from the rest of the world, creating a destructive power vacuum. The author predicts that, once the U.S. becomes a net energy exporter, the infamous trade deficit with countries like China and Japan will shrink to the point that the U.S. could cut itself off from them at minimal economic cost. Advances in 3D printing (particularly metal printing) will also allow the U.S. to make its own goods instead of relying on foreign factories. Lacking any interest in affairs outside North America, the U.S. will withdraw from its military and trade alliances, bring all of its troops and ships home, and let high-seas pirates and undemocratic regional powers like Iran fill the vacuum.

Problematically, trends over the last five years since The Accidental Superpower‘s publishing haven’t gone the way the author predicted, which suggests the U.S. isn’t on track to being able to economically detach itself from the rest of the world. For example, even though the U.S. became the world’s #1 natural gas producer in 2013 and its #1 oil producer in 2018 and is now breaking all-time export records for both, the country;s trade deficit has gotten WORSE over that period.

A country has a “trade deficit” when the value of the things that it buys from other countries exceeds the value of the things that those countries buy from it. If your country has a trade deficit, then it means you can’t detach from the world economy without suffering serious pain.

Moreover, 3D printers have not improved to the extent that the author seems to have predicted, nor are they starting to replace traditional manufacturing machines (e.g. – looms, presses, lathes) in factories that mass produce goods. Furthermore, there’s no indication that this will change anytime soon. Looking back, it’s clear now that the author wrote the book during a period of hype about 3D printers, and that rosy predictions in pop-sci articles and financial magazines about how the machines were poised to revolutionize the manufacturing industry probably influenced his thinking.

3D printers failed to live up to the hype, at least in the short-run.

Additionally, since 2014, the U.S. has not become isolationist, in spite of the election of President Trump, whom many policy experts considered a “worst-case scenario” for continuing the U.S. foreign policy status quo. Putting aside the “America First” slogan and countless insulting Tweets aimed at foreign leaders and international alliances, Trump’s concrete policy changes have barely reduced the U.S.’ overseas commitments. Trump has (justifiably) berated other NATO countries for their low defense spending and has “hinted” that he might-possibly-be-thinking-about leaving the alliance, but no real steps have been taken to do so, like shutting down U.S. bases in Europe. Levels of American troops in places that are clearly not core U.S. interests, like Syria and Africa, have little changed since the “globalist” President Obama was in charge. U.S. defense spending is up, and there’s no sign that the military brass or a majority of U.S. politicians want to shrink it.

Where international trade policy is concerned, Trump’s impact has been more substantive as he has replaced NAFTA with a trade pact that favors the U.S. slightly more, refused to join the Trans-Pacific Partnership, and put tariffs on many Chinese imports. But all at worst these policies collectively put a tiny dent in the flow of U.S.-foreign trade.

Since 2014, there has simply been no sign of the U.S. retrenching for its then-existing global commitments, even in spite of the fact that the U.S. elected a more isolationist President in 2016 than the author (or most other experts) probably expected. I don’t think this will change, either, for several reasons. First, even if the U.S. doesn’t consume Middle Eastern oil, many other important countries do and will continue doing so. Allowing the Middle East’s petrostates to fall into chaos will disrupt oil supplies outside of North America, damaging economies across the world, and in turn reducing demand for U.S. exports to those countries. Thus, it will remain in the U.S.’ economic interest to stay engaged in the Middle East indefinitely, and to use its diplomatic and military power to protect the petrostates and Persian Gulf shipping lanes.

Second, the U.S. will stay diplomatically and militarily engaged in seemingly unimportant countries like Afghanistan and the Philippines to keep them from becoming terrorist bases and to prevent them from allying themselves with rivals like Russia or China. Remember that the 9/11 attacks cost the U.S. economy $200 billion at a minimum, and that the attacks were only made possible by al Qaeda having free reign in Afghanistan for bases and planning.

Third, as I hinted earlier, the U.S. military-industrial complex has taken on a life of its own, and pursues its own self-interests and protects its assets (including overseas bases) regardless of America’s actual defense needs. It has become the mother of all entrenched bureaucracies, it’s career suicide for any elected politician to propose serious cuts to it, and fixing military overspending and winding down foreign military alliances is not a priority for most American voters.

China will just, like, fall apart. Arguably the most extreme and least credible prediction in the book is that China will economically and politically implode due to internal and external pressures, it will stop being a world power, and will fragment along ethnolinguistic lines. While the author is right to note that China faces major challenges in the near-to-mid future, he makes elementary errors when he assumes they will lead to national calamity.

I don’t contend the author’s point that China has a corrupt, opaquely run banking sector, and that the country hundreds of billions of dollars in bad debts, but it’s impossible for anyone to know if it will lead to a financial crisis that will wreck the country’s economy. The author’s prediction primarily hinges on this unproven assumption, and is thus bad futurism. The author also rightly points out that China’s working-age population is shrinking due to the defunct One Child policy, and that this will exert serious drag on their economy as the number of unproductive elderly people continues increasing. But again, the author jumps to a conclusion when he predicts this will lead to economic collapse and widespread starvation in rural China. I think it’s much likelier that China’s economic growth rate will continue gradually slowing until it settles near the boundary between “middle” and “high” income countries over the next 20 years. How long it takes them to get out of the “Middle Income Trap” is an open question, but in the long run, they will.

The author’s prediction that the U.S. will help to bankrupt China by ending trade with it ignores the fact that this would be against American interests (the ongoing U.S.-China trade war notwithstanding), and his suggestion that Japan will rearm, magically stop caring about possible nuclear retaliation, and wage a ruinous war against China (along with India and perhaps other Asian countries joining in to block the sea lanes China uses to get oil from the Mideast) is completely silly. Moreover, the notion that China will splinter along ethnolinguistic lines like the Soviet Union did rests on badly flawed assumptions about the Chinese Communist Party’s willingness and ability to use force to put down internal rebellions. The recent 30th anniversary of the Tienanmen Square Massacre gives testimony to the opposite. There are no credible secessionist movements in China, and no rivals to the CCP’s grip on power, and both are unlikely to change.

And now for something completely different.

While reading The Accidental Superpower, I had the lucky…accident…of going on a trip to Ecuador, which is a country dominated by the Andes Mountain range. While there, I climbed a dormant volcano called “Mt. Pichincha,” which is on Quito’s outskirts. That experience in particular and the trip more generally hit home for me some of the book’s important points, and made me think about what they meant the future of intelligent life on Earth and beyond.

Quito sits in a valley that is 9,350 ft (2,850 meters) above sea level, which is already higher than the highest point in any U.S. state east of the Rocky mountains. Most foreigners can feel the tiring physical effects of the thinner air when they simply walk down the street in Quito. Hiking uphill at an even higher altitude is much worse, as I’d soon discover. The first step to climbing Mt. Pichincha is to take a gondola from the edge of the city to a point 12,943 ft (3,945 meters) up the mountain. After that, you walk on a trail to the summit, called “Rucu Pichincha”, 15,696 ft (4,784 meters) high.

Looking down at the city from the gondola station.

Right after exiting the gondola, I noticed it was several degrees colder than in the city, and low-hanging clouds blocked the sunlight. By contrast, Quito far below was mostly bathed in light, and I realized that Mt. Pichincha had its own climate distinct from the valley’s. I hiked out of the gondola station towards the summit, and after only about 20 minutes, passed the last tree along the trail. I was above the treeline, and the only vegetation was wild grass, bushes, and lichens.

Soon after that, I got to what you might call “the cloud line,” meaning I had hiked high enough to be inside that low-hanging cloud layer I noticed at the gondola station. The climate became harsher and more volatile, one minute being still, the next minute being almost clear, and the next being dark and windy. There were actually three distinct “sleet storms” during my hike (keep in mind this was in mid-July, and I was only a few miles from the equator!).

Being in such an environment hit home for me a key point made in The Accidental Superpower: mountains are barriers to human movement, and they form natural borders between human groups. During the first 99.8% of our species’ existence, before Industrial-era technology existed, mountains like Pichincha would have been nearly impassable and almost uninhabitable. Merely building a shelter to escape the harsh climate would have been hard thanks to the lack of wood (remember, I quickly got above the treeline during the hike). Stones would need to be used, which imposes various inefficiencies. Even the crucial ability to make fire for warmth or for cooking would be handicapped by the lack of wood and the moist atmosphere.

If you want an otherworldly experience, explore a large abandoned building, hike a mountain above the treeline, or do hallucinogenic drugs.

The low temperatures (it got bitingly cold and my hands went numb at one point), low sunlight, rocky soil, and sloped land would have made farming impossible. Hunting and gathering on Mt. Pichincha wouldn’t have worked since the animals were so few (I only saw a few small birds and one rabbit) and the vegetation so sparse–the calories you’d burn chasing down animals and walking around to find edible plants would probably exceed the calories you’d get from eating them. Growing food in the arable land in the Quito valley and then shipping it up the mountain on mules or wagons to feed people living there would doubtless be too expensive (unless the mountain people had something really valuable to trade for food, like gold they were getting from a mine), and would ultimately be limited by the same “balance of calories burned vs. obtained” phenomenon. As I realized during my climb, you burn a lot of calories when walking uphill.

The only way a permanent human settlement might have been able to feed itself on Mt. Pichincha would have been if it had domesticated mountain goats or maybe llamas and alpacas (it depends on how sure-footed they are on steep slopes). They could have grazed on the wild grasses and bushes. Even still, I doubt there would have been enough vegetation to support anything but small herds of the animals, which in turn would have kept the number of humans living on the mountain small. The comparatively fertile and benign environment in the Quito valley would have inevitably come to support a much larger, richer population. Imagining a topographical map of the world in my mind’s eye with this new knowledge, many patterns of human settlement and many national boundaries suddenly made more sense to me.

In the town of Da Lat, Vietnam, several hills have been terraced and covered with greenhouses.

As I hiked further, I considered another important point from The Accidental Superpower–technology allows humans to overcome problems imposed by geography–and I thought about how modern technology could make Mt. Pichincha habitable. Paved roads could be built on all but the steepest parts of the mountain, making most points on it accessible to humans from Quito without physical exertion (the gondola could also be extended). The sloped land could be leveled, graded, and terraced in order to build structures above it, where humans could live and work. Greenhouses could be built on the flattened land, and crops grown inside with much greater efficiency than they would grow outside, particularly if the greenhouses contained transplanted soil and used artificial lighting to counter the mountain’s cloudiness. Water supplies could be assured by building a system of rain catchments and cisterns, and by building simple devices that condensed cloud vapor into water. People living on the mountain could produce some of their own food, though it would be cheaper to buy it from a more fertile place and have it shipped up.

Likewise, people living on Mt. Pichincha could generate their own energy, or build power lines to Quito and buy it from them. As noted, the mountain was windy most of the time, so wind turbines would be an efficient power source. And since Pichincha is a dormant volcano, there are good odds that a geothermal power plant could by sited there.

The only real barriers to building towns or even cities at high altitudes like Mt. Pichincha are cost of living and quality of life. Most things would cost more money since they would be scarcer or would have to be trucked in from Quito. The mountain’s harsh and volatile climate would also be repellent to most humans, though the fact the people still willingly live in Iceland and northern Alaska proves that some people could take it. And even at the peak of Mt. Pichincha, 15,696 ft high, the air is thick enough for humans to breathe without difficulty after a few months of acclimatization. In fact, the highest human town is in neighboring Peru and is 1,000 ft higher than Pichincha’s summit, and professional mountaineers have found that the air remains thick enough for humans to breathe up to 26,247 ft (8,000 m). Thus, modern technology has overcome the natural impediments to human settlement on anything but the world’s very tallest mountains.

One of Facebook’s massive data centers is in Sweden, close to the Arctic Circle. It was sited there partly because the cold temperatures can cool the servers.

I kept hiking, and in spite of worsening physical exhaustion and the thinning air, I had more insights. What would even more advanced technologies mean for the habitability of Mt. Pichincha and other desolate places in the future? Extending the logic from The Accidental Superpower, it would stand to reason that they would open even more to settlement, especially if the settlement were being done by intelligent machines that didn’t have the same biological limitations and inbuilt preferences as humans like us. The colder, windy climate would actually be beneficial since it would help the AIs to cool their computer chips. The thinness of the air and poor quality of the soil wouldn’t pose problems since machines don’t breathe or eat. The bleakness of the landscape wouldn’t bother machines since they would lack the inbuilt genetic programming that humans have, which makes us crave sunny, green environments and blue skies.

All that AIs would need to survive on Mt. Pichincha would be electricity, building materials, and roads to get up and down the mountain. As I noted earlier, the electricity problem could be solved easily, there’s no engineering reason why roads couldn’t be built on all but the steepest parts of the mountain, and building materials could be shipped in from Quito, or even made by pulverizing some of the stones comprising the mountain itself and turning them into concrete. Intelligent machines could probably thrive there. And if they had radically advanced technologies like fusion power and nanomachine-based replicators, they’d have no need for anything aside from periodic refills of fusion reactor fuel and small amounts of trace elements they couldn’t extract from the mountain’s soil or from the air.

Additionally, it struck me that living on Mt. Pichincha or another remote, inhospitable place would be an ethical choice for intelligent machines since their presence wouldn’t displace any humans, and since constructing server farms and structures wouldn’t destroy much animal or plant life. As I noted, I only saw a handful of small animals during my hike, and few of the plants were higher than my knees. Perhaps it will be the fate of intelligent machines to build their cities on mountaintops, cold deserts, or floating on the seas.

And extending this train of thinking by assuming ever-better technology and intelligent machines moving to ever-more-remote places, we are inevitably led to the prospect of space colonization, von Neumann probes, and the conversion of whole celestial bodies into computronium, as Ray Kurzweil predicts (and maybe in the very far future, if our understanding of Physics evolves, our civilization might find ways to “live” in the very fabric of space-time and be invisible but everywhere, or to expand beyond our universe). The well-established point in The Accidental Superpower that technology allows humans to overcome problems imposed by geography and to spread to formerly inhospitable parts of the world (e.g. – Florida before air conditioning was invented) has major implications for the future, and buttresses ideas about space colonization that are now the purview of science fiction. The rule should be rephrased as: Technology allows intelligent life forms to overcome problems imposed by geography and to spread to formerly inhospitable places.

Right as I was making this wonderful conceptual breakthrough, I got so dizzy from the effects of thin air and physical exertion that I fell on my face. Fortunately, I was wearing my backpack around the front of my body like a weirdo, so it cushioned the impact, and I was unhurt. I took stock of my condition and my surroundings: the trail had become narrow and treacherous (the segment I was on was named “Paso de la Muerte” or “Step of the Dead”), I couldn’t see far because I was enveloped in the clouds, and stumbling to the right thanks to another loss of balance or a strong gust of wind would have meant rolling far down a nearly vertical cliff. No, I was not prepared for this climb, so I turned back about 30 minutes short of reaching the summit of Rucu Pichincha. Yes, it was a bit disappointed, but I didn’t want to die, and I consoled myself with my new bit of knowledge and with the fact that I’d managed to hike to about 14,500 ft, which, other than the times I’ve flown in airplanes, is the highest I’ve been in my life.

Links:

  1. https://nationalinterest.org/feature/iran-took-advantage-royal-navys-weakness-69132
  2. https://ir.citi.com/VxaZkW5OaL4zYu9Ogq9J%2FuWvTZpLXtWSY2Zc62o%2FEXVKGas%2F2iiItA%3D%3D

Roundup of interesting articles, June 2019

Cement production releases more CO2 than all the world’s trucks. The more humans there are, the more cement is needed to make residences, workplaces, and recreational buildings for them.
https://www.bloomberg.com/news/articles/2019-06-23/green-cement-struggles-to-expand-market-as-pollution-focus-grows

Sweden burns most of its non-recyclable trash, generating energy in the process and possibly producing less air pollution than burying the waste in landfills.
https://energynews.us/2013/10/17/midwest/is-burning-garbage-green-in-sweden-theres-little-debate/

One important climatology assumption is that human industrial activity has made the skies cloudier, which has partly offset global warming since white clouds reflect light back into space, keeping the planet cooler. The assumption might be wrong, in which case climatologists have overestimated how much CO2 heats up the planet.
https://www.nature.com/news/cloud-seeding-surprise-could-improve-climate-predictions-1.19971

Some astronomers think we could find intelligent alien life by looking for planets that have lots of air pollution (e.g. – unnatural methane concentrations and gases like CFCs). I think it’s a bad strategy, as advanced aliens would probably use clean energy and would have found ways to cleanse their atmospheres of pollutants. VERY advanced aliens that were non-organic could also live on almost any planet or moon, so it makes little sense to even focus our gaze on Earth-like planets. Our Moon could have ancient, underground cities full of alien machines for all we know.
https://www.astrobio.net/alien-life/unintelligent-life-cfcs/

Ten years ago, a survey of American children revealed that 1/3 of them didn’t think the planet would be habitable by the time they grew up. Most of them are 18 or older now.
https://www.treehugger.com/culture/no-kidding-one-in-three-children-fear-earth-apocalypse.html

Here’s a funny roundup of past predictions that flopped.
https://www.boredpanda.com/posts-that-did-not-age-well/

Fifty years ago, the Cuyahoga River “caught on fire,” helping to impel the modern American environmentalist movement. Monumental progress has been made since then.
https://www.popularmechanics.com/science/energy/a28106182/cuyahoga-river-fire-cleveland-epa/

The vast majority of plastic waste found in the oceans comes from China and a handful of other Asian countries. For its size, the U.S. does a good job preventing its plastic waste from going this route.
https://wedocs.unep.org/bitstream/handle/20.500.11822/17969/Plastic_waste_inputs_from_land_into_the_ocean.pdf

Robert Downey Jr. thinks we could have robots pick up all the trash on Earth in as little as a decade. His timeline is of course wrong, but I’ve predicted that it will happen during the 22nd century. Having seemingly ingenious insights like this gets a lot easier once you start thinking of robots as humans that work for free, and then you start listing all the things that humans can do (like picking trash off the ground).
https://www.businessinsider.com/robert-downy-jr-will-use-robotics-ai-to-clean-earth-2019-6

If we stopped caring about aesthetics and only cared about efficiency, would be cover the exterior walls of our buildings with vertical solar panels? It’s the sort of thing Skynet would do.
https://www.solarpowerworldonline.com/2017/07/wall-mounted-solar-trend/

A dirty secret about solar panels is that they break after 25-30 years, can’t be fixed, and are expensive to recycle. Today’s solar power boom will probably cause a huge increase in electronic waste starting in the 2030s.
https://www.greenbiz.com/article/what-will-happen-solar-panels-after-their-useful-lives-are-over

Conversely, battery recycling is extremely efficient. Close to 100% of the metals in a battery–both in the power-storing cells and in the structural casings–can be recovered through standard processes. Fears of a “global lithium shortage” once electric cars become popular are overblown.
http://www.mdpi.com/2032-6653/6/4/1039/pdf

A team funded by Google has re-done several of the most (in)famous lab experiments from around 30 years ago that “proved” cold fusion worked, and confirmed with high certainty that none of them work.
https://blogs.sciencemag.org/pipeline/archives/2019/06/11/google-investigates-cold-fusion

Several copies of the Soviet-built “RBMK” nuclear reactor that was shown in the recent HBO docu-series Chernobyl are still in use in Russia. They were upgraded after the nuclear meltdown and have operated without incident.
http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/appendices/rbmk-reactors.aspx

While the Fukushima nuclear reactor melted down during the 2011 earthquake/tsunami, the Onagawa reactor didn’t, even though it was closer to the epicenter. This was mostly due to Onagawa being built on higher ground, so the wave couldn’t flood and cripple its vital machinery.
https://thebulletin.org/2014/03/onagawa-the-japanese-nuclear-power-plant-that-didnt-melt-down-on-3-11/

Before we build autonomous robot butlers, we might have remote-controlled robot butlers piloted by humans. Manual labor jobs could be outsourced to anyone with an internet connection.
https://qz.com/1642691/richard-baldwin-on-the-inhumanely-fast-next-phase-of-globalization/

Facebook is planning to make a digital currency called “Libra.”
https://apnews.com/e072208933054935a14a749800f4983d

A “deepnude” app that can allegedly interpolate a woman’s nude body onto a real photo of her has been created (and shut down after an uproar). It’s only a matter of time before other apps can do this realistically by combining different images of the same woman, taken from different angles.
https://www.bbc.com/news/technology-48799045

Walmart is using an AI camera surveillance system to catch thieves who don’t scan all their items at self-checkout kiosks.
https://www.businessinsider.com/walmart-tracks-theft-with-computer-vision-1000-stores-2019-6?r=US&IR=T

Some Las Vegas casinos are planning to start using “robot bartenders” for lack of a better term, that can precisely make hundreds of different types of alcoholic drinks. Predictably, casino workers unions are enraged.
https://www.usatoday.com/story/tech/2019/06/10/mgm-resorts-las-vegas-jobs-machines-robots/1415103001/

Unmanned boats and submarines could be used soon to make high-res maps of the seafloor. Someday, there will be a 1:1 virtual copy of the Earth.
https://www.bbc.com/news/science-environment-48473701

An app that changes the appearances of a person’s eyes during videophone calls so it seems like they’re looking at the person on the other end has been created. I think this will be very beneficial.
https://youtu.be/rDUtBZXWrsE

After seeing the problems Samsung had with its prototype foldable smartphones, Huawei has wisely decided to delay the debut of its own. This is a great case study of the risks of being a “first-mover.”
https://www.bbc.com/news/technology-48636452

Samsung has patented a “rollable phone.”
https://www.theverge.com/2019/6/12/18663094/samsung-patent-rollable-phone-displays

Samsung has unveiled a wall-sized, 8K TV that ‘is designed to never turn off and can change into a digital canvas best matching the owner’s interior needs and mood… [It] will display a variety of “curated art”, including paintings, photographs and video art, as well as customisable pictures with digital frames.’ I’ve predicted this sort of device will become common in middle-class households in the 2030s.
https://www.thesun.co.uk/tech/9284646/samsung-292-inch-8k-tv-release-date-price/

The director of Google’s Quantum AI Lab predicts “quantum supremacy” will be achieved by the end of this year.
https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/

Cryogenically frozen human sperm has no known “shelf life.” It stays good indefinitely.
https://www.eurekalert.org/pub_releases/2019-06/esoh-ldo062019.php

A man has used California’s assisted suicide law to arrange his cryogenic freezing. This is the best way to do it, since the time between death and preservation is kept to a minimum, so the fewest possible brain cells die.
https://gizmodo.com/california-man-becomes-the-first-death-with-dignity-p-1831652934

Here’s an interesting graphic showing the statuses of all drugs and therapies that might extend human longevity.
https://www.lifespan.io/the-rejuvenation-roadmap/

Sea urchins don’t seem to age and might be naturally immortal.
http://www.sciencedirect.com/science/article/pii/S0531556519300592

The evidence of a genetic link between high intelligence and some types of mental illness has grown stronger.
https://www.frontiersin.org/articles/10.3389/fpsyt.2019.00175/full

The theory of Lamarckian evolution is actually partly right.
https://blogs.sciencemag.org/pipeline/archives/2019/06/19/unto-the-fourth-generation-in-nematodes

Here’s a list of known human genetic disorders that are caused by mutations to single genes or to small numbers of genes. Whenever human genetic engineering becomes common, we should start out by using it to purge these mutations from the genepool, rather than by trying to make super-geniuses.
https://en.wikipedia.org/wiki/List_of_genetic_disorders

The long-term “human limit” to high-intensity physical exertion is about 2.5 times of the baseline energy expenditure. In other words, if your body burns 2,000 calories per day under normal conditions, then you could adopt a lifestyle where you burned up to 5,000 calories a day and sustain it indefinitely. More than that, and you’d physically break down.
https://www.bbc.com/news/health-48527798

The U.S. Army wants American companies to start making copies of Russian guns and ammo so we can supply them to armed groups overseas that are used to them. A secondary goal might be to undermine Russia’s arms exports.
https://nationalinterest.org/blog/buzz/us-army-wants-american-companies-make-ammo-russian-designed-weapons-60582

China is quickly making amphibious transport dock ships. It now has eight “Type 071” ships, which are very similar in terms of size and capabilities to America’s San Antonio class transport dock ships.
https://www.janes.com/article/89152/china-increases-construction-rate-of-amphibious-assault-ships

Clear, color photos show an Iranian patrol boat removing a dud mine from the hull of a Japanese-flagged oil tanker in the Gulf of Oman.
https://www.thedrive.com/the-war-zone/28574/u-s-releases-new-evidence-of-irans-involvement-in-tanker-attacks

Iran shot down a U.S. spy drone over the Persian Gulf, and President Trump surprisingly did not retaliate. Maybe he has inside knowledge that the drone had actually strayed into Iranian airspace as they claim, or that the attack was ordered by a rogue commander and not by the Iranian government.
https://politi.co/2Y4ANXThttps://politi.co/2Y4ANXT

China’s exported military UAVs are apparently unreliable.
https://www.janes.com/article/89036/jordan-puts-chinese-uavs-on-sale

Pilot error probably caused the rent crash of the Japanese F-35.
https://www.cnn.com/2019/06/10/asia/japan-f-35-fighter-crash-cause-hnk-intl/index.html

The Northrop B-2 stealth bomber is now a familiar sight, but its early competitor, built by Lockheed, is almost forgotten.
https://foxtrotalpha.jalopnik.com/lockheeds-senior-peg-the-forgotten-stealth-bomber-1534057907

Boeing has demonstrated a drop-in kit that lets the UH-60 helicopter fly unmanned.
https://www.janes.com/article/89088/lockheed-martin-flies-unmanned-technology-aboard-uh-60-for-first-time

U.S. spies have allegedly inserted malware into Russia’s power grid in retaliation for Russian hacking against U.S. infrastructure.
https://gizmodo.com/the-us-has-allegedly-placed-malware-deep-in-russias-pow-1835547743

Sarin nerve gas is very hard to make and to weaponize, and the Sarin production equipment that Russia claims it seized from Syrian rebels is almost certainly fake. Russia probably manufactured the exhibit to prop up its long-running claims that nerve gas attacks in Syria are being done by forces other than Bashar al-Assad’s, Russia’s ally.
https://blogs.sciencemag.org/pipeline/archives/2019/06/21/an-idiotic-exhibit

The last samples of rinderpest–an awful virus that once caused misery to millions of humans and livestock–have been destroyed.
https://www.bbc.com/news/science-environment-48629469

A scientist debunks a Washington Post exposé about Pfizer allegedly covering up a treatment for Alzheimer’s disease that they found. If one of the premier newspapers in the U.S. is guilty of this kind of scientific illiteracy and alarmism, is it any surprise that average Americans are also so ignorant of science and so taken with conspiracy theories?
https://www.washingtonpost.com/business/economy/pfizer-had-clues-its-blockbuster-drug-could-prevent-alzheimers-why-didnt-it-tell-the-world/2019/06/04/9092e08a-7a61-11e9-8bb7-0fc796cf2ec0_story.html

The myth that American girls are hitting puberty earlier thanks to hormones or other chemicals in the food supply (mostly the meat supply) is wrong. It is wholly or almost wholly due to rising obesity rates among children and to overdiagnosis by doctors. Body fat produces the hormone “leptin,” and leptin levels determine when puberty starts in girls.
https://www.webmd.com/children/features/obesity#1

Also consider that, thanks to malnourishment and hence low leptin levels, girls in medieval England didn’t start puberty until 14, whereas the average age today is 10.
https://www.tandfonline.com/doi/full/10.1080/00766097.2015.1119392

The FDA is finally taking real action against fraudulent “stem cell clinics.”
https://www.washingtonpost.com/health/fda-wins-groundbreaking-case-against-for-profit-stem-cell-company/2019/06/03/498373fa-864e-11e9-98c1-e945ae5db8fb_story.html

The Apollo Program cost at least $288 billion in today’s U.S. dollars.
http://www.planetary.org/blogs/casey-dreier/2019/reconstructing-the-price-of-apollo.html

An ideal airport has long, parallel runways that are spaced far enough apart from each other to let planes use them simultaneously, without risk of collision. Atlanta’s international airport is, by these standards, excellent.
https://www.youtube.com/watch?v=5QZ3eozyQfU&t=636s

‘Once pollen makes contact with your clothing or your hair, it will likely never leave. Some pollen have spikes, and many are coated in lipids that act like glue. The pollen count may go down a little with each cycle in a washing machine, but they won’t go away.’
https://qz.com/1635897/the-us-is-using-pollen-to-track-illegal-drugs-like-fentanyl/

All the little bumps and squares on the surfaces of space ship models in sci-fi films are called “greebles.”
https://en.wikipedia.org/wiki/Greeble

Will future cars have giant, external airbags?
https://www.foxnews.com/auto/external-airbags-could-turn-cars-into-pufferfish-for-safety

Electric car engines are almost silent, making them quieter in operation than gas-powered cars. However, the noise difference between the two steadily shrinks as vehicle speed increases and the overall noise signature is dominated by sounds produced by air friction and tires. This means electric cars will lower the amount of traffic noise in areas where vehicles move slowly–such as cities and suburban neighborhoods–but will do little to make highways quieter.
https://cleantechnica.com/2016/06/05/will-electric-cars-make-traffic-quieter-yes-no/

Over the course of just two days in 1886, a small army of workers changed the gauges of 11,500 miles of railroad track in the southern U.S. to match the rest of the nation.
http://southern.railfan.net/ties/1966/66-8/gauge.html

How robot butlers will make you money and help the planet

I don’t know what the first multipurpose, household robots will look like or what term we’ll use for them, but for this essay, let’s assume they’ll look like “Andrew” from the movie Bicentennial Man, and that we’ll call them “robot butlers.”

Imagine every household has a human-sized, multipurpose house robot that can do all the same physical tasks we can. What sorts of tasks could it do to make its human master’s life easier? The answers that first come to mind are that robot butlers (as I’ll call them for simplicity’s sake in this essay) will do the most common and time-consuming daily chores for humans, as they loom largest in our minds. These include tasks like cooking food, doing laundry, cleaning house interiors (e.g. – vacuuming and mopping floors), running errands to make recurring purchases of expendable commodity items like food or toiletries, and mowing lawns.

If every household had a robot butler that handled those tasks, it would significantly improve quality of life for humans, primarily by freeing up time for leisure. It’s common for American adults to spend an average of two hours a day on chores, and getting that time back would be transformative for most of them, particularly the busiest ones who are overloaded with commitments and long commutes. Even just one more hour per day could make the difference between, say, raising an estranged child who is bitter that you never spent time with him and raising one who has a good relationship with you because you had the time to help him with his homework every night.

We could stop right there and digest the extent to which robot butlers will benefit us. However, I think they’ll have many other overlooked but powerful benefits to their human masters and to the world as a whole, that at first glance might seem small and unimportant.

Having robots assiduously clean house interiors, clean plates and cutlery, remove trash, and wash clothing will improve their human masters’ health by reducing the number of pathogens they are exposed to. Keeping dust levels low inside houses will also reduce instances of all kinds of respiratory illness. Public health will improve and there could be a small boost to average life expectancy.

Hand-in-hand with that would be psychological and emotional benefits. Every human being has a different amount of what is sometimes called “psychic energy,” which can be thought of as an internal mental and emotional reservoir that gets quickly depleted by stressors and only slowly refills. Things like not getting enough sleep, being sick with a cold, dealing with a bad commute, having an argument with someone, or even just having to make a simple decision all drain a person’s psychic energy reserve to varying degrees. The size of a person’s psychic energy reserve is mostly predetermined and unchangeable, and people with very small reserves often end up in mental institutions or very low-stress lifestyles while people lucky to have large reserves more commonly become high-achievers like CEOs and politicians. Many Americans are chronically stressed out because they’ve bought into the oversimplified cultural belief that success is just a matter of effort, and that anyone can be as rich and famous as, say, Elon Musk if they work hard enough. This is wrong, as it ignores the existence of inherent, individual limitations like psychic energy reservoirs and IQ (on both metrics, Elon Musk was born very gifted). Unfortunately, too few Americans realize or want to admit this, so they overload themselves with work and personal responsibilities that exceed their innate limits so they can chase a media-manufactured vision of success, and then try to ignore the damage it does to their psyche and energy levels.

The work that robot butlers would do would help ameliorate this problem in surprising ways. Just the sight of an unkempt yard or cluttered house causes a person a small amount of stress. Glancing at a sink full of dirty dishes or a basket of soiled laundry drains one’s psychic energy reservoir a little bit since it is ugly and reminds you of unpleasant work you must do. By contrast, imagine the psychological benefit of coming home each day to a clean, orderly house and a hot meal waiting for you at the kitchen table. Imagine the emotional boost you would get from the aggregate effect of your robot butler taking care of all the essential but unpleasant chores I’ve listed so far. Also note that arguments over housework are a common cause of stress among spouses and housemates, so if a robot were doing all the chores, human relationships would be more harmonious.

That’s not all. Robot butlers would also know how to maintain the things you own, and do those million-and-one little tasks that you know you should be doing but probably aren’t, like changing your furnace filters each month or vacuuming your refrigerator’s coils each year. At some point, they will get smart enough to routinely test your devices for signs of impending malfunction and to take preemptive corrective action. The result would be fewer breakdowns of machinery, less money spent on emergency repair bills to plumbers or electricians, and less stress for humans. (I’m planning to explore this idea in a future blog entry that will be entitled something like “Why nothing will ever break in the future”.)

Taking it a step farther, robot butlers will know how to fix broken things, which will be obviously helpful to their human masters. For example, assume one of your coffee table’s legs breaks. Your robot would immediately see this, figure out the model number of the coffee table, contact the company about getting a replacement leg, and ask for your permission to order the replacement part, and install it by itself. If you didn’t have the robot, the task of fixing the table wouldn’t be worth your time, so you’d just throw out the whole table and buy a new one, which would cost you more money ($10 for a replacement leg vs. $50 for an entirely new table). A coffee table that was 80% perfectly fine would also get tossed in a landfill, which is wasteful. Your robot butler would thus reduce the money you spend on replacement possessions and reduce your waste footprint. Poorer people would benefit the most since they would have to spend less of their scarce money replacing their possessions.

Your robot butler would also help you by selling things for you that you would otherwise throw away. For example, assume your coffee table isn’t broken, but you’ve had it for ten years and want to get rid of it because you think it is out-of-date and ugly. You tell the robot you want to do this, and it instantly looks through eBay and other Internet marketplaces to determine how much money you could get if you sold it. If you authorize it to do so, the robot would then list the coffee table for sale on the Internet, find a buyer, and physically carry the table out to the curb to the buyer’s truck when they come by to get it. The money that they paid would automatically credited to your bank account or PayPal account, and the whole process would require no work on your part. If you didn’t have the house robot, it wouldn’t be worth your time to do all of that just to make $20, and you would probably have just tossed the table in the trash. Again, your robot would save you money and make cheap, used goods available to other people. Poorer people would benefit the most from the expanded marketplace of secondhand goods.

Additionally, your robot butler would know how to spruce up or restore items like the old coffee table at low cost, allowing it to sell them for you at higher prices, or improving them enough to keep you from throwing them out. YouTube has many channels devoted to craftsmen of various types who show the process of restoring or “upcycling” things like old furniture or just plain garbage to make them aesthetically pleasing, stylish and useful, all at very low cost (my favorite channel is “Dashner Design & Restoration”). I think robot butlers will someday be able to independently identify ways to make such upgrades to old human possessions, and to do the work themselves. Manmade objects would be thrown out less often as a result, and even poor people and people with no sense of taste would have functional and stylish-looking things.

In Bicentennial Man, the robot butler learns how to fix things and also starts carving creative sculptures from wood. There’s no reason to think robot butlers won’t someday have these abilities.

Having perfect memories and a lot of time to poke around your house, your robot butler would also inventory everything you owned and update the inventories in real time. Over time, it would observe which possessions you never used, would recommend you sell or recycle them, and then handle every aspect of the transaction. For example, your house robot would know that you have an antique sewing machine in your basement collecting dust that you haven’t touched in five years. Based on a personality profile it constructed of you, it would know that your odds of ever using the sewing machine are 1%, and that your vague plan to restore it and experiment with old-fashioned sewing was just a flight of fancy you had years ago and should now relinquish. Without being prompted, your robot approaches you, suggests that you sell the sewing machine, offers to manage every aspect of the sale, and tells you that based on its research you could get $200 for it. The robot would periodically (i.e. – once every few months) approach you with these sorts of ideas. If you didn’t have the robot, it would never cross your mind to sell the sewing machine or any of your other clutter. Even researching sales prices wouldn’t be worth your time, and the idea of having a yard sale would be too tiring to consider. The end result of your house robot’s labor is less clutter in your house (itself a psychological benefit) and the transfer of things you never use to people who actually need them. If every household in your country had a robot butler that did this, the aggregate effect of expanding the secondhand goods market so much would make the prices of all sorts of things decrease. Again, poorer people would be helped the most.

Taking the next step in the “sharing economy,” your robot butler could rent out some of your important but rarely used possessions, making you money. The sorts of objects that come immediately to mind are hand tools and power tools. The vast majority of people only use these 1% of the time, and the other 99%, they sit idle in a garage or work shed (there’s something basically crazy about humans’ impulse to hoard things). Your robot could post an online portfolio of rentable tools for you, and loan them to other people during periods when you were not projected to need them. Again, it would manage every aspect of the rental operation (i.e. – listing the tools, verifying the identities of people who want to rent them, collecting the money, inspecting the tools for damage upon return). You would merely agree to the arrangement and start turning a small weekly profit for no work at all on your part. Once again, if you didn’t have the robot, this small-time enterprise would be too much trouble to consider. As a result, you would make more efficient use of your assets and earn money for doing nothing, and poorer people in your neighborhood would gain access to tools cheaply instead of having to spend a lot of money buying their own. (Let me note that a neighborhood “tool library” would probably be an even more efficient arrangement, as it’s still overkill for every household to have as many tools as they typically do, but that’s for a different blog entry.)

Unused things in your house that had no market value could be recycled, and I imagine billions of old glass bottles, metal containers, articles of old clothing and bedding, and old newspapers re-entering the manufacturing stream as a result. This would mean less strain on the environment and less guilt about the impact humans have on it. Also note that robot butlers would vastly improve the cost efficiency of recycling because they would know how to properly sort recyclable from non-recyclable materials, they would always clean the outgoing recyclable items, and they would always crush/compact the items to reduce their volume. Even well-meaning humans struggle to remember which of their trash items are recyclable and which aren’t since the acceptable items vary from one municipality to the next, and too often they forget to clean their recyclable items, so recycling centers get large amounts of unusable material, which they are forced to filter out at great cost. Your robot butler wouldn’t make these mistakes, so your local recycling center would get shipments of much higher-quality items that would be cheaper and faster to process. Automated sorting machines at recycling centers will also be much better than they are today thanks to the same technology your robot butler will have, further improving efficiency.

Your robot butler would also have the time and knowledge to separate out the portions of your household waste that could be composted and to put them in a backyard bin. Not every scrap of food waste can be composted, which again sets the “bar” too high for most people given how busy they are with other things. Your robot butler would also mix in dead leaves, wood, grass clippings, dead animals, and whatever else it could find on your property that could be composted. The compost would be spread on your lawn to prevent soil erosion and to grow crops.

And that brings us to another benefit: Your robot butler will be able to create and manage a garden on your property. This would reduce your grocery bill, would probably be better for the environment since the food would be hyper-local in origin, and would give you complete control over its production (e.g. – no pesticides, no mishandling, no GMOs). I noted earlier how robot butlers would boost the efficiency of how manmade goods were used and distributed, and now I’ve shown how they could enhance the efficiency of land usage, with grass-covered land put to use growing food. Global food supplies would increase, which will become more important as the human population grows.

In summary, house robots could vastly reduce waste, improve the efficiency of our capital stock usage and land usage, and strengthen the sharing economy. They would give poorer people much better access to all sorts of things (furniture, clothing, tools, etc.), which would flatten out many class-based differences.

Additionally, once everyone has a robot butler, it stands to reason that the postal service and private shippers like FedEx and Amazon will use similar robots to deliver goods to doorsteps (think of it as a robot mailman who rides around inside a self-driving delivery truck), and it will become possible for robots to “hand off” items in place of the current practice in which a human deliveryman drops off mail and packages at your doorstep, unattended. The automated delivery vehicle will probably send a wireless signal to your robot butler informing it of its ETA, and your butler would make sure to be waiting at your front door at the given time. Because of robot handoffs, package and mail thefts will drop to almost nothing, meaning less emotional stress for would-be victims. Since vendors incorporate financial losses due to “shrinkage” into their prices, the near-elimination of these kinds of thefts will lead to slight price cuts to all kinds of goods.

Robot handoffs like this could also be used to send OUTGOING items, which would further boost efficiency in many ways. For example, if you ordered an item through Amazon, then during the door threshold handoff, your robot butler would accept the new package and then hand the Amazon robot an empty package from a previous purchase you made. Your Amazon account would be automatically credited a small amount of money for recycling, Amazon would saves money by getting its cardboard packages and packing materials back, and the Amazon delivery truck would return to its warehouse with something of value inside of it instead of hauling air. Note that this would be a more efficient way to dispose of Amazon cardboard packages than sending them to a general-purpose municipal paper recycling plant.

As a general practice, timing and coordinating outflows of household items and wastes to match inflows of useful items would move us closer to a zero-waste/closed loop economy, and would probably cut transportation costs. Your outgoing items would have to closely match the weight and volume of your incoming items for obvious reasons relating to the size of the delivery truck. To a degree, this model would compete with the one-size-fits-all, periodic waste disposal system we’re accustomed to, where there is a designated day of the week when a large trash truck comes through the neighborhood to pick up all items that residents don’t want.

I think this vision of the future will be realized over the next several decades, with the first, mass-produced robot butlers becoming available to rich people in the 2030s. As with their smartphones, humans will be able to download “apps” into their robot butlers to give them new, and increasingly sophisticated abilities. Initially, they will merely be able to follow orders given by humans, but later, the robots will gain their own powers of observation and reason, and will proactively suggest helpful things to humans (like selling unused possessions). This should be thought of as one small part of the broader trend of humans outsourcing physical and mental drudgery to machines. Every capability I’ve described in this essay (and surely more) should be commonly found in robot butlers by the 2060s.

Links:

https://www.dailymail.co.uk/femail/article-3512386/The-REAL-cost-keeping-home-tidy-Americans-spend-140-000-lifetimes-30-days-year-boring-household-tasks-like-cleaning-laundry.html